Artículos relacionados a Multi-sensor Fusion for Autonomous Driving

Multi-sensor Fusion for Autonomous Driving - Tapa dura

 
9789819932795: Multi-sensor Fusion for Autonomous Driving

Sinopsis

Although sensor fusion is an essential prerequisite for autonomous driving, it entails a number of challenges and potential risks. For example, the commonly used deep fusion networks are lacking in interpretability and robustness. To address these fundamental issues, this book introduces the mechanism of deep fusion models from the perspective of uncertainty and models the initial risks in order to create a robust fusion architecture.

This book reviews the multi-sensor data fusion methods applied in autonomous driving, and the main body is divided into three parts: Basic, Method, and Advance. Starting from the mechanism of data fusion, it comprehensively reviews the development of automatic perception technology and data fusion technology, and gives a comprehensive overview of various perception tasks based on multimodal data fusion. The book then proposes a series of innovative algorithms for various autonomous driving perception tasks, to effectively improve the accuracy and robustness of autonomous driving-related tasks, and provide ideas for solving the challenges in multi-sensor fusion methods. Furthermore, to transition from technical research to intelligent connected collaboration applications, it proposes a series of exploratory contents such as practical fusion datasets, vehicle-road collaboration, and fusion mechanisms.

In contrast to the existing literature on data fusion and autonomous driving, this book focuses more on the deep fusion method for perception-related tasks, emphasizes the theoretical explanation of the fusion method, and fully considers the relevant scenarios in engineering practice. Helping readers acquire an in-depth understanding of fusion methods and theories in autonomous driving, it can be used as a textbook for graduate students and scholars in related fields or as a reference guide for engineers who wish to apply deep fusion methods.


"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Prof. Xinyu Zhang is an associate professor at the School of Vehicle and Mobility, Tsinghua University. He was a research fellow at the University of Cambridge, UK, in 2008. Since 2014, he has served as Deputy Secretary General of the Chinese Association for Artificial Intelligence. As director of the Tsinghua Mengshi team, he invented the first amphibious autonomous flying car in China and proposed a new method of collaborative fusion for perception information and motion information in three-dimensional traffic. His research interests include multi-model fusion, unmanned ground vehicles, and flying cars.

Prof. Jun Li is a professor at the School of Vehicle and Mobility, Tsinghua University. He is the President of the China Society of Automotive Engineers and is also an Academician of the Chinese Academy of Engineering. Relying on the Intelligent Vehicle Design and Safety Technology Research Center, he led the team to focus on the core technology of intelligent driving, mainly to carry out the system engineering research on the integration of smart city-smart transportation-smart vehicle (SCSTSV). He focuses on the research of cutting-edge technologies, such as intelligent shared vehicle design, safety of the intended functionality, 5G vehicle equipment, and fusion perception, to overcome the core problems of intelligent driving and improve the core competitiveness of intelligent networked vehicles.

Dr. Zhiwei Li is a tutor of master’s students in Beijing University of Chemical Technology. In 2020, he studied as a postdoctoral fellow with Academician Jun Li at Tsinghua University. His main research interests include computer vision, intelligent perception and autonomous driving, and robot system architecture.

Prof. Huaping Liu is a professor at the Department of Computer Science and Technology, Tsinghua University. Heserves as an associate editor for various journals, including IEEE Transactions on Automation Science and Engineering, IEEE Transactions on Industrial Informatics, IEEE Robotics and Automation Letters, Neurocomputing, and Cognitive Computation. He has served as an associate editor for ICRA and IROS and on the IJCAI, RSS, and IJCNN Program Committees. His main research interests are robotic perception and learning.

Mo Zhou is currently a doctoral candidate at the School of Vehicle and Mobility, Tsinghua University, supervised by Prof. Jun Li. She received MS degree in image and video communications and signal processing from the University of Bristol, Bristol, UK. Her research interests include intelligent vehicles, deep learning, environmental perception, and driving safety.

Dr. Li Wang is a postdoctoral fellow in the State Key Laboratory of Automotive Safety and Energy, and the School of Vehicle and Mobility,Tsinghua University. He received his PhD degree in mechatronic engineering at the State Key Laboratory of Robotics and System, Harbin Institute of Technology, in 2020. He was a visiting scholar at Nanyang Technology of University for two years. He is the author of more than 20 SCI/EI articles. His research interests include autonomous-driving perception, 3D robot vision, and multi-modal fusion.

Zhenhong Zou is an assistant researcher at the School of Vehicle and Mobility, Tsinghua University. He received his BS degree in Information and Computation Science from Beihang University and was subsequently a visiting student at the University of California, Los Angeles, USA, supervised by Prof. Deanna Needell. His research interests include autonomous driving and multi-sensor fusion.


De la contraportada

Although sensor fusion is an essential prerequisite for autonomous driving, it entails a number of challenges and potential risks. For example, the commonly used deep fusion networks are lacking in interpretability and robustness. To address these fundamental issues, this book introduces the mechanism of deep fusion models from the perspective of uncertainty and models the initial risks in order to create a robust fusion architecture.

This book reviews the multi-sensor data fusion methods applied in autonomous driving, and the main body is divided into three parts: Basic, Method, and Advance. Starting from the mechanism of data fusion, it comprehensively reviews the development of automatic perception technology and data fusion technology, and gives a comprehensive overview of various perception tasks based on multimodal data fusion. The book then proposes a series of innovative algorithms for various autonomous driving perception tasks, to effectively improve the accuracy and robustness of autonomous driving-related tasks, and provide ideas for solving the challenges in multi-sensor fusion methods. Furthermore, to transition from technical research to intelligent connected collaboration applications, it proposes a series of exploratory contents such as practical fusion datasets, vehicle-road collaboration, and fusion mechanisms.

In contrast to the existing literature on data fusion and autonomous driving, this book focuses more on the deep fusion method for perception-related tasks, emphasizes the theoretical explanation of the fusion method, and fully considers the relevant scenarios in engineering practice. Helping readers acquire an in-depth understanding of fusion methods and theories in autonomous driving, it can be used as a textbook for graduate students and scholars in related fields or as a reference guide for engineers who wish to apply deep fusion methods.


"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 7,64 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789819932825: Multi-sensor Fusion for Autonomous Driving

Edición Destacada

ISBN 10:  9819932823 ISBN 13:  9789819932825
Editorial: Springer, 2024
Tapa blanda

Resultados de la búsqueda para Multi-sensor Fusion for Autonomous Driving

Imagen de archivo

Zhang, Xinyu; Li, Jun; Li, Zhiwei; Liu, Huaping; Zhou, Mo; Wang, Li; Zou, Zhenhong
Publicado por Springer, 2023
ISBN 10: 9819932793 ISBN 13: 9789819932795
Nuevo Tapa dura

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9789819932795

Contactar al vendedor

Comprar nuevo

EUR 156,73
Convertir moneda
Gastos de envío: EUR 7,64
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Xinyu; Li, Jun; Li, Zhiwei; Liu, Huaping; Zhou, Mo; Wang, Li; Zou, Zhenhong
Publicado por Springer, 2023
ISBN 10: 9819932793 ISBN 13: 9789819932795
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789819932795

Contactar al vendedor

Comprar nuevo

EUR 186,77
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Xinyu Zhang|Jun Li|Zhiwei Li|Huaping Liu|Mo Zhou|Li Wang|Zhenhong Zou
Publicado por Springer Nature Singapore, 2023
ISBN 10: 9819932793 ISBN 13: 9789819932795
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first comprehensive and systematic introduction to multi-sensor fusion for autonomous drivingAddresses the theory of deep multi-sensor fusion from the perspective of uncertainty for both models and dataElaborates on the key applications. Nº de ref. del artículo: 859350534

Contactar al vendedor

Comprar nuevo

EUR 141,30
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Xinyu; Li, Jun; Li, Zhiwei; Liu, Huaping; Zhou, Mo; Wang, Li; Zou, Zhenhong
Publicado por Springer, 2023
ISBN 10: 9819932793 ISBN 13: 9789819932795
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789819932795_new

Contactar al vendedor

Comprar nuevo

EUR 176,74
Convertir moneda
Gastos de envío: EUR 13,74
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Xinyu Zhang
ISBN 10: 9819932793 ISBN 13: 9789819932795
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Although sensor fusion is an essential prerequisite for autonomous driving, it entails a number of challenges and potential risks. For example, the commonly used deep fusion networks are lacking in interpretability and robustness. To address these fundamental issues, this book introduces the mechanism of deep fusion models from the perspective of uncertainty and models the initial risks in order to create a robust fusion architecture.This book reviews the multi-sensor data fusion methods applied in autonomous driving, and the main body is divided into three parts: Basic, Method, and Advance. Starting from the mechanism of data fusion, it comprehensively reviews the development of automatic perception technology and data fusion technology, and gives a comprehensive overview of various perception tasks based on multimodal data fusion. The book then proposes a series of innovative algorithms for various autonomous driving perception tasks, to effectively improve the accuracy and robustness of autonomous driving-related tasks, and provide ideas for solving the challenges in multi-sensor fusion methods. Furthermore, to transition from technical research to intelligent connected collaboration applications, it proposes a series of exploratory contents such as practical fusion datasets, vehicle-road collaboration, and fusion mechanisms.In contrast to the existing literature on data fusion and autonomous driving, this book focuses more on the deep fusion method for perception-related tasks, emphasizes the theoretical explanation of the fusion method, and fully considers the relevant scenarios in engineering practice. Helping readers acquire an in-depth understanding of fusion methods and theories in autonomous driving, it can be used as a textbook for graduate students and scholars in related fields or as a reference guide for engineers who wish to apply deep fusion methods. 248 pp. Englisch. Nº de ref. del artículo: 9789819932795

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Xinyu; Li, Jun; Li, Zhiwei; Liu, Huaping; Zhou, Mo; Wang, Li; Zou, Zhenhong
Publicado por Springer, 2023
ISBN 10: 9819932793 ISBN 13: 9789819932795
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 248. Nº de ref. del artículo: 26398551305

Contactar al vendedor

Comprar nuevo

EUR 199,64
Convertir moneda
Gastos de envío: EUR 3,40
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Xinyu; Li, Jun; Li, Zhiwei; Liu, Huaping; Zhou, Mo; Wang, Li; Zou, Zhenhong
Publicado por Springer, 2023
ISBN 10: 9819932793 ISBN 13: 9789819932795
Nuevo Tapa dura
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand pp. 248. Nº de ref. del artículo: 397858518

Contactar al vendedor

Comprar nuevo

EUR 208,97
Convertir moneda
Gastos de envío: EUR 7,45
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Xinyu; Li, Jun; Li, Zhiwei; Liu, Huaping; Zhou, Mo; Wang, Li; Zou, Zhenhong
Publicado por Springer, 2023
ISBN 10: 9819932793 ISBN 13: 9789819932795
Nuevo Tapa dura
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND pp. 248. Nº de ref. del artículo: 18398551299

Contactar al vendedor

Comprar nuevo

EUR 215,87
Convertir moneda
Gastos de envío: EUR 9,95
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Xinyu Zhang
ISBN 10: 9819932793 ISBN 13: 9789819932795
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -Although sensor fusion is an essential prerequisite for autonomous driving, it entails a number of challenges and potential risks. For example, the commonly used deep fusion networks are lacking in interpretability and robustness. To address these fundamental issues, this book introduces the mechanism of deep fusion models from the perspective of uncertainty and models the initial risks in order to create a robust fusion architecture.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 248 pp. Englisch. Nº de ref. del artículo: 9789819932795

Contactar al vendedor

Comprar nuevo

EUR 171,19
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Xinyu Zhang
Publicado por Springer Nature Singapore, 2023
ISBN 10: 9819932793 ISBN 13: 9789819932795
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Although sensor fusion is an essential prerequisite for autonomous driving, it entails a number of challenges and potential risks. For example, the commonly used deep fusion networks are lacking in interpretability and robustness. To address these fundamental issues, this book introduces the mechanism of deep fusion models from the perspective of uncertainty and models the initial risks in order to create a robust fusion architecture.This book reviews the multi-sensor data fusion methods applied in autonomous driving, and the main body is divided into three parts: Basic, Method, and Advance. Starting from the mechanism of data fusion, it comprehensively reviews the development of automatic perception technology and data fusion technology, and gives a comprehensive overview of various perception tasks based on multimodal data fusion. The book then proposes a series of innovative algorithms for various autonomous driving perception tasks, to effectively improve the accuracy and robustness of autonomous driving-related tasks, and provide ideas for solving the challenges in multi-sensor fusion methods. Furthermore, to transition from technical research to intelligent connected collaboration applications, it proposes a series of exploratory contents such as practical fusion datasets, vehicle-road collaboration, and fusion mechanisms.In contrast to the existing literature on data fusion and autonomous driving, this book focuses more on the deep fusion method for perception-related tasks, emphasizes the theoretical explanation of the fusion method, and fully considers the relevant scenarios in engineering practice. Helping readers acquire an in-depth understanding of fusion methods and theories in autonomous driving, it can be used as a textbook for graduate students and scholars in related fields or as a reference guide for engineers who wish to apply deep fusion methods. Nº de ref. del artículo: 9789819932795

Contactar al vendedor

Comprar nuevo

EUR 175,09
Convertir moneda
Gastos de envío: EUR 62,71
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 1 copia(s) de este libro

Ver todos los resultados de su búsqueda