Artículos relacionados a Hyperparameter Tuning for Machine and Deep Learning...

Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide - Tapa dura

 
9789811951695: Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide

Sinopsis

This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required.

The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.


"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Eva Bartz is an expert in law and data protection. Within the wide area of data protection, she specializes particularly in the application of artificial intelligence and its benefits and dangers. Based on this vast experience, she founded Bartz & Bartz GmbH in 2014 together with Thomas Bartz-Beielstein and offers consulting for a variety of customers. She translates the academic expertise of Bartz & Bartz GmbH’s advisors - who are leading experts in their fields - into a benefit for her customers. One of these customers was the Federal Statistical Office of Germany (Destatis), and the study for them laid the groundwork for this book. 

Prof. Dr. Thomas Bartz-Beielstein is an artificial intelligence expert with 30+ years of experience. He is a professor of applied mathematics at TH Köln in Germany and the director of the Institute for Data Science, Engineering, and Analytics (IDE+A). His research lies in artificial intelligence, machine learning, simulation, and optimization. Hedeveloped the Sequential Parameter Optimization (SPO). SPO integrates approaches from surrogate model-based optimization and evolutionary computing. He has worked on diverse topics from applied mathematics and statistics, design of experiments, simulation-based optimization and applications in domains as water industry, elevator control, or mechanical engineering.

Prof. Dr. Martin Zaefferer is a professor at Duale Hochschule Baden-Württemberg Ravensburg, teaching subjects related to data science in business informatics. Previously, he worked as a consultant at Bartz & Bartz GmbH and as a researcher at TH Köln, where he also studied electrical engineering and automation. He received a PhD from the Department of Computer Science at TU Dortmund University. Subsequently, he developed a keen interest in researching methods from the intersection of optimization and machine learning algorithms. He is passionate about the analysis of complex processes and finding novel solutions to challenging real-world problems.

Prof. Dr. Olaf Mersmann is a professor of data science at TH Köln-University of Applied Sciences in Germany and a member of the Institute for Data Science, Engineering, and Analytics (IDE+A). Having studied physics, statistics and data science, his research interests include landscape analysis for black box optimization problems and industrial machine learning applications. He is one of the developers of the exploratory landscape analysis approach to characterize continuous function landscapes.

De la contraportada

This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. 

The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike.


"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 2,28 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 2,28 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789811951725: Hyperparameter Tuning for Machine and Deep Learning with R: A Practical Guide

Edición Destacada

ISBN 10:  9811951721 ISBN 13:  9789811951725
Editorial: Springer, 2022
Tapa blanda

Resultados de la búsqueda para Hyperparameter Tuning for Machine and Deep Learning...

Imagen del vendedor

Bartz, Eva (EDT); Bartz-beielstein, Thomas (EDT); Zaefferer, Martin (EDT); Mersmann, Olaf (EDT)
Publicado por Springer, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 45586806-n

Contactar al vendedor

Comprar nuevo

EUR 57,22
Convertir moneda
Gastos de envío: EUR 2,28
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Eva Bartz
ISBN 10: 9811951691 ISBN 13: 9789811951695
Nuevo Tapa dura Original o primera edición

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here. The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II).Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike. This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9789811951695

Contactar al vendedor

Comprar nuevo

EUR 59,56
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789811951695

Contactar al vendedor

Comprar nuevo

EUR 65,90
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Bartz, Eva (EDT); Bartz-beielstein, Thomas (EDT); Zaefferer, Martin (EDT); Mersmann, Olaf (EDT)
Publicado por Springer, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45586806

Contactar al vendedor

Comprar usado

EUR 64,91
Convertir moneda
Gastos de envío: EUR 2,28
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789811951695_new

Contactar al vendedor

Comprar nuevo

EUR 58,20
Convertir moneda
Gastos de envío: EUR 13,78
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Bartz, Eva (EDT); Bartz-beielstein, Thomas (EDT); Zaefferer, Martin (EDT); Mersmann, Olaf (EDT)
Publicado por Springer, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 45586806-n

Contactar al vendedor

Comprar nuevo

EUR 58,19
Convertir moneda
Gastos de envío: EUR 17,25
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Eva Bartz
ISBN 10: 9811951691 ISBN 13: 9789811951695
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This open access book provides a wealth of hands-on examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods. The aim of the book is to equip readers with the ability to achieve better results with significantly less time, costs, effort and resources using the methods described here.The case studies presented in this book can be run on a regular desktop or notebook computer. No high-performance computing facilities are required. The idea for the book originated in a study conducted by Bartz & Bartz GmbH for the Federal Statistical Office of Germany (Destatis). Building on that study, the book is addressed to practitioners in industry as well as researchers, teachers and students in academia. The content focuses on the hyperparameter tuning of ML and DL algorithms, and is divided into two main parts: theory (Part I) and application (Part II). Essential topics covered include: a survey of important model parameters; four parameter tuning studies and one extensive global parameter tuning study; statistical analysis of the performance of ML and DL methods based on severity; and a new, consensus-ranking-based way to aggregate and analyze results from multiple algorithms. The book presents analyses of more than 30 hyperparameters from six relevant ML and DL methods, and provides source code so that users can reproduce the results. Accordingly, it serves as a handbook and textbook alike. 344 pp. Englisch. Nº de ref. del artículo: 9789811951695

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26396345836

Contactar al vendedor

Comprar nuevo

EUR 77,58
Convertir moneda
Gastos de envío: EUR 3,45
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Bartz, Eva (EDT); Bartz-beielstein, Thomas (EDT); Zaefferer, Martin (EDT); Mersmann, Olaf (EDT)
Publicado por Springer, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45586806

Contactar al vendedor

Comprar usado

EUR 65,92
Convertir moneda
Gastos de envío: EUR 17,25
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2023
ISBN 10: 9811951691 ISBN 13: 9789811951695
Nuevo Tapa dura
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 401112627

Contactar al vendedor

Comprar nuevo

EUR 79,05
Convertir moneda
Gastos de envío: EUR 7,48
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Existen otras 10 copia(s) de este libro

Ver todos los resultados de su búsqueda