"Sinopsis" puede pertenecer a otra edición de este libro.
Alexander Jung is Assistant Professor of Machine Learning at the Department of Computer Science, Aalto University where he leads the research group "Machine Learning for Big Data". His courses on machine learning, artificial intelligence, and convex optimization are among the most popular courses offered at Aalto University. He received a Best Student Paper Award at the premium signal processing conference IEEE ICASSP in 2011, an Amazon Web Services Machine Learning Award in 2018, and was elected as Teacher of the Year by the Department of Computer Science in 2018. He serves as an Associate Editor for the IEEE Signal Processing Letters.
Machine learning (ML) has become a commonplace element in our everyday lives and a standard tool for many fields of science and engineering. To make optimal use of ML, it is essential to understand its underlying principles.
This book approaches ML as the computational implementation of the scientific principle. This principle consists of continuously adapting a model of a given data-generating phenomenon by minimizing some form of loss incurred by its predictions.
The book trains readers to break down various ML applications and methods in terms of data, model, and loss, thus helping them to choose from the vast range of ready-made ML methods.
The book's three-component approach to ML provides uniform coverage of a wide range of concepts and techniques. As a case in point, techniques for regularization, privacy-preservation as well as explainability amount tospecific design choices for the model, data, and loss of a ML method.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,19 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-45783
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 1st ed. 2022 edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26396346907
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 401111492
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18396346897
Cantidad disponible: 4 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine learning (ML) has become a commonplace element in our everyday lives and astandard tool for many fields of science and engineering. To make optimal use of ML, it isessential to understand its underlying principles.This book approaches ML as the computational implementation of the scientific principle.This principle consists of continuously adapting a model of a given data-generatingphenomenon by minimizing some form of loss incurred by its predictions.The book trains readers to break down various ML applications and methods in terms ofdata, model, and loss, thus helping them to choose from the vast range of ready-made ML methods.The book's three-component approach to ML provides uniform coverage of a wide range ofconcepts and techniques. As a case in point, techniques for regularization, privacy-preservationas well as explainability amount to specific design choices for the model, data, and loss of a ML method. 232 pp. Englisch. Nº de ref. del artículo: 9789811681950
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 784368166
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789811681950
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789811681950_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Machine learning (ML) has become a commonplace element in our everyday lives and astandard tool for many fields of science and engineering. To make optimal use of ML, it isessential to understand its underlying principles.This book approaches ML as the computational implementation of the scientific principle.This principle consists of continuously adapting a model of a given data-generatingphenomenon by minimizing some form of loss incurred by its predictions.The book trains readers to break down various ML applications and methods in terms ofdata, model, and loss, thus helping them to choose from the vast range of ready-made ML methods.The book's three-component approach to ML provides uniform coverage of a wide range ofconcepts and techniques. As a case in point, techniques for regularization, privacy-preservationas well as explainability amount tospecific design choices for the model, data, and loss of a ML method. Nº de ref. del artículo: 9789811681950
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 45594255-n
Cantidad disponible: Más de 20 disponibles