Artículos relacionados a Genetic Programming for Production Scheduling: An Evolutiona...

Genetic Programming for Production Scheduling: An Evolutionary Learning Approach (Machine Learning: Foundations, Methodologies, and Applications) - Tapa dura

 
9789811648588: Genetic Programming for Production Scheduling: An Evolutionary Learning Approach (Machine Learning: Foundations, Methodologies, and Applications)

Sinopsis

This book introduces readers to an evolutionary learning approach, specifically genetic programming (GP), for production scheduling. The book is divided into six parts. In Part I, it provides an introduction to production scheduling, existing solution methods, and the GP approach to production scheduling. Characteristics of production environments, problem formulations, an abstract GP framework for production scheduling, and evaluation criteria are also presented. Part II shows various ways that GP can be employed to solve static production scheduling problems and their connections with conventional operation research methods. In turn, Part III shows how to design GP algorithms for dynamic production scheduling problems and describes advanced techniques for enhancing GP's performance, including feature selection, surrogate modeling, and specialized genetic operators. In Part IV, the book addresses how to use heuristics to deal with multiple, potentially conflicting objectives in production scheduling problems, and presents an advanced multi-objective approach with cooperative coevolution techniques or multi-tree representations. Part V demonstrates how to use multitask learning techniques in the hyper-heuristics space for production scheduling. It also shows how surrogate techniques and assisted task selection strategies can benefit multitask learning with GP for learning heuristics in the context of production scheduling. Part VI rounds out the text with an outlook on the future.

Given its scope, the book benefits scientists, engineers, researchers, practitioners, postgraduates, and undergraduates in the areas of machine learning, artificial intelligence, evolutionary computation, operations research, and industrial engineering.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Fangfang Zhang is a Postdoctoral Research Fellow at the School of Engineering and Computer Science, Victoria University of Wellington, New Zealand. Her current research interests include evolutionary computation, hyper-heuristics learning/optimization, job shop scheduling, and multitask optimization.

Su Nguyen is a Senior Research Fellow and Algorithm Lead at the Centre for Data Analytics and Cognition, La Trobe University, Melbourne, Australia. His expertise includes evolutionary computation, simulation optimization, automated algorithm design, interfaces of artificial intelligence/operations research, and their applications in logistics, energy, and transportation. Dr. Nguyen chaired the IEEE Task Force on Evolutionary Scheduling and Combinatorial Optimisation from 2014 to 2018. He gave technical tutorials on evolutionary computation and artificial intelligence-based visualization at the Parallel Problem Solving from Nature Conference in 2018 and the IEEE World Congress on Computational Intelligence in 2020.

Yi Mei is a Senior Lecturer at the School of Engineering and Computer Science, Victoria University of Wellington, New Zealand. He has published more than 100 articles in prominent journals for Evolutionary Computation and Operations Research, including IEEE Transactions on Evolutionary Computation, IEEE Transactions on Cybernetics, Evolutionary Computation, European Journal of Operational Research, and ACM Transactions on Mathematical Software. His research interests include evolutionary scheduling and combinatorial optimization, machine learning, genetic programming, and hyper-heuristics.

Mengjie Zhang is a Professor of Computer Science, Head of the Evolutionary Computation Research Group, and Associate Dean (Research and Innovation) of the Faculty of Engineering, Victoria University of Wellington, New Zealand. His current research interests include artificial intelligence and machine learning, particularly genetic programming, image analysis, feature selection and reduction, job shop scheduling, and transfer learning. He has published over 600 research papers in international journals and conference proceedings. Prof. Zhang is a Fellow of the Royal Society of New Zealand, Fellow of the IEEE, and an IEEE Distinguished Lecturer. He has previously chaired the IEEE CIS Intelligent Systems and Applications Technical Committee, the IEEE CIS Emergent Technologies Technical Committee, and the Evolutionary Computation Technical Committee, and served on the IEEE CIS Award Committee. He is a Vice-Chair of the Task Force on Evolutionary Computer Vision and Image Processing, and the Founding Chair of the IEEE Computational Intelligence Chapter in New Zealand. He is a Fellow of the Royal Society of New Zealand, a Fellow of the IEEE, and an IEEE Distinguished Lecturer.

De la contraportada

This book introduces readers to an evolutionary learning approach, specifically genetic programming (GP), for production scheduling. The book is divided into six parts. In Part I, it provides an introduction to production scheduling, existing solution methods, and the GP approach to production scheduling. Characteristics of production environments, problem formulations, an abstract GP framework for production scheduling, and evaluation criteria are also presented. Part II shows various ways that GP can be employed to solve static production scheduling problems and their connections with conventional operation research methods. In turn, Part III shows how to design GP algorithms for dynamic production scheduling problems and describes advanced techniques for enhancing GP’s performance, including feature selection, surrogate modeling, and specialized genetic operators. In Part IV, the book addresses how to use heuristics to deal with multiple, potentially conflicting objectives in production scheduling problems, and presents an advanced multi-objective approach with cooperative coevolution techniques or multi-tree representations. Part V demonstrates how to use multitask learning techniques in the hyper-heuristics space for production scheduling. It also shows how surrogate techniques and assisted task selection strategies can benefit multitask learning with GP for learning heuristics in the context of production scheduling. Part VI rounds out the text with an outlook on the future.

Given its scope, the book benefits scientists, engineers, researchers, practitioners, postgraduates, and undergraduates in the areas of machine learning, artificial intelligence, evolutionary computation, operations research, and industrial engineering.


"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,10 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789811648618: Genetic Programming for Production Scheduling: An Evolutionary Learning Approach (Machine Learning: Foundations, Methodologies, and Applications)

Edición Destacada

ISBN 10:  9811648611 ISBN 13:  9789811648618
Editorial: Springer, 2022
Tapa blanda

Resultados de la búsqueda para Genetic Programming for Production Scheduling: An Evolutiona...

Imagen del vendedor

Zhang, Fangfang|Nguyen, Su|Mei, Yi|Zhang, Mengjie
ISBN 10: 9811648581 ISBN 13: 9789811648588
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book introduces readers to an evolutionary learning approach, specifically genetic programming (GP), for production scheduling. In Part I, it provides an introduction to production scheduling, existing solution methods, and the GP approach to productio. Nº de ref. del artículo: 483501844

Contactar al vendedor

Comprar nuevo

EUR 136,16
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Fangfang; Nguyen, Su; Mei, Yi; Zhang, Mengjie
Publicado por Springer, 2021
ISBN 10: 9811648581 ISBN 13: 9789811648588
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789811648588_new

Contactar al vendedor

Comprar nuevo

EUR 153,49
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Zhang, Fangfang; Nguyen, Su; Mei, Yi; Zhang, Mengjie
Publicado por Springer, 2021
ISBN 10: 9811648581 ISBN 13: 9789811648588
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 44081019-n

Contactar al vendedor

Comprar nuevo

EUR 153,47
Convertir moneda
Gastos de envío: EUR 17,35
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Fangfang Zhang
ISBN 10: 9811648581 ISBN 13: 9789811648588
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book introduces readers to an evolutionary learning approach, specifically genetic programming (GP), for production scheduling. The book is divided into six parts. In Part I, it provides an introduction to production scheduling, existing solution methods, and the GP approach to production scheduling. Characteristics of production environments, problem formulations, an abstract GP framework for production scheduling, and evaluation criteria are also presented. Part II shows various ways that GP can be employed to solve static production scheduling problems and their connections with conventional operation research methods. In turn, Part III shows how to design GP algorithms for dynamic production scheduling problems and describes advanced techniques for enhancing GP's performance, including feature selection, surrogate modeling, and specialized genetic operators. In Part IV, the book addresses how to use heuristics to deal with multiple, potentially conflicting objectives in production scheduling problems, and presents an advanced multi-objective approach with cooperative coevolution techniques or multi-tree representations. Part V demonstrates how to use multitask learning techniques in the hyper-heuristics space for production scheduling. It also shows how surrogate techniques and assisted task selection strategies can benefit multitask learning with GP for learning heuristics in the context of production scheduling. Part VI rounds out the text with an outlook on the future.Given its scope, the book benefits scientists, engineers, researchers, practitioners, postgraduates, and undergraduates in the areas of machine learning, artificial intelligence, evolutionary computation, operations research, and industrial engineering. 372 pp. Englisch. Nº de ref. del artículo: 9789811648588

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Zhang, Fangfang; Nguyen, Su; Mei, Yi; Zhang, Mengjie
Publicado por Springer, 2021
ISBN 10: 9811648581 ISBN 13: 9789811648588
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 44081019-n

Contactar al vendedor

Comprar nuevo

EUR 158,85
Convertir moneda
Gastos de envío: EUR 17,10
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Fangfang Zhang
ISBN 10: 9811648581 ISBN 13: 9789811648588
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces readers to an evolutionary learning approach, specifically genetic programming (GP), for production scheduling. The book is divided into six parts. In Part I, it provides an introduction to production scheduling, existing solution methods, and the GP approach to production scheduling. Characteristics of production environments, problem formulations, an abstract GP framework for production scheduling, and evaluation criteria are also presented. Part II shows various ways that GP can be employed to solve static production scheduling problems and their connections with conventional operation research methods. In turn, Part III shows how to design GP algorithms for dynamic production scheduling problems and describes advanced techniques for enhancing GP's performance, including feature selection, surrogate modeling, and specialized genetic operators. In Part IV, the book addresses how to use heuristics to deal with multiple, potentially conflicting objectives in production scheduling problems, and presents an advanced multi-objective approach with cooperative coevolution techniques or multi-tree representations. Part V demonstrates how to use multitask learning techniques in the hyper-heuristics space for production scheduling. It also shows how surrogate techniques and assisted task selection strategies can benefit multitask learning with GP for learning heuristics in the context of production scheduling. Part VI rounds out the text with an outlook on the future.Given its scope, the book benefits scientists, engineers, researchers, practitioners, postgraduates, and undergraduates in the areas of machine learning, artificial intelligence, evolutionary computation, operations research, and industrial engineering. Nº de ref. del artículo: 9789811648588

Contactar al vendedor

Comprar nuevo

EUR 164,49
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Zhang, Fangfang; Nguyen, Su; Mei, Yi; Zhang, Mengjie
Publicado por Springer, 2021
ISBN 10: 9811648581 ISBN 13: 9789811648588
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44081019

Contactar al vendedor

Comprar usado

EUR 167,23
Convertir moneda
Gastos de envío: EUR 17,10
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Zhang, Fangfang; Nguyen, Su; Mei, Yi; Zhang, Mengjie
Publicado por Springer, 2021
ISBN 10: 9811648581 ISBN 13: 9789811648588
Antiguo o usado Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44081019

Contactar al vendedor

Comprar usado

EUR 167,51
Convertir moneda
Gastos de envío: EUR 17,35
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Fangfang Zhang
ISBN 10: 9811648581 ISBN 13: 9789811648588
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -This book introduces readers to an evolutionary learning approach, specifically genetic programming (GP), for production scheduling. The book is divided into six parts. In Part I, it provides an introduction to production scheduling, existing solution methods, and the GP approach to production scheduling. Characteristics of production environments, problem formulations, an abstract GP framework for production scheduling, and evaluation criteria are also presented. Part II shows various ways that GP can be employed to solve static production scheduling problems and their connections with conventional operation research methods. In turn, Part III shows how to design GP algorithms for dynamic production scheduling problems and describes advanced techniques for enhancing GP¿s performance, including feature selection, surrogate modeling, and specialized genetic operators. In Part IV, the book addresses how to use heuristics to deal with multiple, potentially conflicting objectives in production scheduling problems, and presents an advanced multi-objective approach with cooperative coevolution techniques or multi-tree representations. Part V demonstrates how to use multitask learning techniques in the hyper-heuristics space for production scheduling. It also shows how surrogate techniques and assisted task selection strategies can benefit multitask learning with GP for learning heuristics in the context of production scheduling. Part VI rounds out the text with an outlook on the future.Given its scope, the book benefits scientists, engineers, researchers, practitioners, postgraduates, and undergraduates in the areas of machine learning, artificial intelligence, evolutionary computation, operations research, and industrial engineering.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 372 pp. Englisch. Nº de ref. del artículo: 9789811648588

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Fangfang; Nguyen, Su; Mei, Yi; Zhang, Mengjie
Publicado por Springer, 2021
ISBN 10: 9811648581 ISBN 13: 9789811648588
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789811648588

Contactar al vendedor

Comprar nuevo

EUR 193,82
Convertir moneda
Gastos de envío: EUR 6,84
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 5 copia(s) de este libro

Ver todos los resultados de su búsqueda