Artículos relacionados a Digital Mapping of Soil Landscape Parameters: Geospatial...

Digital Mapping of Soil Landscape Parameters: Geospatial Analyses using Machine Learning and Geomatics: 72 (Studies in Big Data) - Tapa blanda

 
9789811532405: Digital Mapping of Soil Landscape Parameters: Geospatial Analyses using Machine Learning and Geomatics: 72 (Studies in Big Data)

Sinopsis

This book addresses the mapping of soil-landscape parameters in the geospatial domain. It begins by discussing the fundamental concepts, and then explains how machine learning and geomatics can be applied for more efficient mapping and to improve our understanding and management of ‘soil’. The judicious utilization of a piece of land is one of the biggest and most important current challenges, especially in light of the rapid global urbanization, which requires continuous monitoring of resource consumption. The book provides a clear overview of how machine learning can be used to analyze remote sensing data to monitor the key parameters, below, at, and above the surface. It not only offers insights into the approaches, but also allows readers to learn about the challenges and issues associated with the digital mapping of these parameters and to gain a better understanding of the selection of data to represent soil-landscape relationships as well as the complex and interconnected links between soil-landscape parameters under a range of soil and climatic conditions. Lastly, the book sheds light on using the network of satellite-based Earth observations to provide solutions toward smart farming and smart land management.

 


"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Professor Pradeep Kumar Garg is faculty in Civil Engineering Department of Indian Institute of Technology, Roorkee. He has also served as vice chancellor, Uttarakhand Technical University, Dehradun. He completed his B.Tech. in 1980 and his M.Tech. in 1982, both from the University of Roorkee, India (now IIT Roorkee). He did a Ph.D. from University of Bristol, UK, and postdoctoral research work at the University of Reading, UK. He joined the Department of Civil Engineering at IIT Roorkee in 1982. Dr. Garg has published about 93 research papers, guided 7 Ph.D. thesis, 47 M.Tech. thesis, authored one textbook on Remote Sensing, organized 22 training programmes, and prepared two educational films under UGC programme. He has completed 13 research projects and 25 consultancy projects. He is Fellow member of 5 Technical Societies and life member of 15 Technical Societies. His main areas of research interest are remote sensing and GIS applications. 

Professor Rahul Dev Garg is faculty in Civil Engineering Department of Indian Institute of Technology, Roorkee. He graduated with a bachelor’s in technology in Civil Engineering in 1989, master’s in technology in 1993, and a Ph.D. in 2004 from IIT Roorkee. He has also served as a scientist from 1993 to 2007 in Indian Institute of Remote Sensing (IIRS), Dehradun. Dr. Garg has published about 110 research papers, guided 8 Ph.D. thesis, 47 M.Tech. thesis, authored one textbook on Remote Sensing, organized 22 training programmes, and prepared two educational films under UGC programme. He has completed 11 research projects and 24 consultancy projects. He is Fellow member of 3 Technical Societies and life member of 10 Technical Societies. His main areas of interest are land surveying, remote sensing, GIS, GPS, digital image processing, SAR interferometry, and GPR. 

Dr. Gaurav Shukla is currently working as a faculty member in surveying and geomatics section, Civil Engineering Department, Maharishi Markandeshwar (Deemed to be University) University, Mullana, Haryana, India. He is also a nodal coordinator of MHRD initiative, virtual lab programme. He is postgraduated in geomatics from the Indian Institute of Technology (ISM), Dhanbad, in 2011 and completed his Ph.D. from Indian Institute of Technology, Roorkee, India, in 2018. Dr. Shukla has published 7 journal papers and organized 2 training programmes. His main areas of research interest include nonparametric approaches to retrieval of Earth’s parameters, GNSS reflectometry, remote sensing, and GIS applications. 

Dr. Hari Shanker Srivastava (Scientist G) is currently working as Scientist/Engineer-SG  in Agriculture and Soils Department of Indian Institute of Remote Sensing (IIRS), Indian Space Research Organization (ISRO), Dehradun, India. He did a Ph.D. in Physics on synthetic aperture radar. He explored multiparametric microwave data from ground-based scatterometer, RADARSAT-2, hybrid polarimetric RISAT-1 SAR, passive AMSR-E and SMOS for various applications in agriculture, soil moisture, surface roughness, forestry, wetland, and human settlement.

De la contraportada

This book addresses the mapping of soil-landscape parameters in the geospatial domain. It begins by discussing the fundamental concepts, and then explains how machine learning and geomatics can be applied for more efficient mapping and to improve our understanding and management of soil . The judicious utilization of a piece of land is one of the biggest and most important current challenges, especially in light of the rapid global urbanization, which requires continuous monitoring of resource consumption. The book provides a clear overview of how machine learning can be used to analyze remote sensing data to monitor the key parameters, below, at, and above the surface. It not only offers insights into the approaches, but also allows readers to learn about the challenges and issues associated with the digital mapping of these parameters and to gain a better understanding of the selection of data to represent soil-landscape relationships as well as the complex and interconnected links between soil-landscape parameters under a range of soil and climatic conditions. Lastly, the book sheds light on using the network of satellite-based Earth observations to provide solutions toward smart farming and smart land management.

 


"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 5,15 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9789811532375: Digital Mapping of Soil Landscape Parameters: Geospatial Analyses using Machine Learning and Geomatics: 72 (Studies in Big Data)

Edición Destacada

ISBN 10:  9811532370 ISBN 13:  9789811532375
Editorial: Springer, 2020
Tapa dura

Resultados de la búsqueda para Digital Mapping of Soil Landscape Parameters: Geospatial...

Imagen de archivo

Garg, Pradeep Kumar; Garg, Rahul Dev; Shukla, Gaurav; Srivastava, Hari Shanker
Publicado por Springer, 2021
ISBN 10: 9811532400 ISBN 13: 9789811532405
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789811532405_new

Contactar al vendedor

Comprar nuevo

EUR 146,62
Convertir moneda
Gastos de envío: EUR 5,15
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Pradeep Kumar Garg|Rahul Dev Garg|Gaurav Shukla|Hari Shanker Srivastava
Publicado por Springer Singapore, 2021
ISBN 10: 9811532400 ISBN 13: 9789811532405
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides a framework for model development for key parameters, below, at and above the surface&nbspPresents color images for better visual interpretation and learning&nbspIncludes sample satellite images for practical applications. Nº de ref. del artículo: 442355241

Contactar al vendedor

Comprar nuevo

EUR 136,16
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Pradeep Kumar Garg
ISBN 10: 9811532400 ISBN 13: 9789811532405
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book addresses the mapping of soil-landscape parameters in the geospatial domain. It begins by discussing the fundamental concepts, and then explains how machine learning and geomatics can be applied for more efficient mapping and to improve our understanding and management of 'soil'. The judicious utilization of a piece of land is one of the biggest and most important current challenges, especially in light of the rapid global urbanization, which requires continuous monitoring of resource consumption. The book provides a clear overview of how machine learning can be used to analyze remote sensing data to monitor the key parameters, below, at, and above the surface. It not only offers insights into the approaches, but also allows readers to learn about the challenges and issues associated with the digital mapping of these parameters and to gain a better understanding of the selection of data to represent soil-landscape relationships as well as the complex and interconnected links between soil-landscape parameters under a range of soil and climatic conditions. Lastly, the book sheds light on using the network of satellite-based Earth observations to provide solutions toward smart farming and smart land management. 164 pp. Englisch. Nº de ref. del artículo: 9789811532405

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Garg, Pradeep Kumar; Garg, Rahul Dev; Shukla, Gaurav; Srivastava, Hari Shanker
Publicado por Springer, 2021
ISBN 10: 9811532400 ISBN 13: 9789811532405
Nuevo Tapa blanda

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9789811532405

Contactar al vendedor

Comprar nuevo

EUR 148,05
Convertir moneda
Gastos de envío: EUR 25,52
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Pradeep Kumar Garg
ISBN 10: 9811532400 ISBN 13: 9789811532405
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book addresses the mapping of soil-landscape parameters in the geospatial domain. It begins by discussing the fundamental concepts, and then explains how machine learning and geomatics can be applied for more efficient mapping and to improve our understanding and management of 'soil'. The judicious utilization of a piece of land is one of the biggest and most important current challenges, especially in light of the rapid global urbanization, which requires continuous monitoring of resource consumption. The book provides a clear overview of how machine learning can be used to analyze remote sensing data to monitor the key parameters, below, at, and above the surface. It not only offers insights into the approaches, but also allows readers to learn about the challenges and issues associated with the digital mapping of these parameters and to gain a better understanding of the selection of data to represent soil-landscape relationships as well as the complex and interconnected links between soil-landscape parameters under a range of soil and climatic conditions. Lastly, the book sheds light on using the network of satellite-based Earth observations to provide solutions toward smart farming and smart land management. Nº de ref. del artículo: 9789811532405

Contactar al vendedor

Comprar nuevo

EUR 165,03
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Garg, Pradeep Kumar; Garg, Rahul Dev; Shukla, Gaurav; Srivastava, Hari Shanker
Publicado por Springer, 2021
ISBN 10: 9811532400 ISBN 13: 9789811532405
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789811532405

Contactar al vendedor

Comprar nuevo

EUR 177,13
Convertir moneda
Gastos de envío: EUR 6,81
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Pradeep Kumar Garg
ISBN 10: 9811532400 ISBN 13: 9789811532405
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -This book addresses the mapping of soil-landscape parameters in the geospatial domain. It begins by discussing the fundamental concepts, and then explains how machine learning and geomatics can be applied for more efficient mapping and to improve our understanding and management of ¿soil¿. The judicious utilization of a piece of land is one of the biggest and most important current challenges, especially in light of the rapid global urbanization, which requires continuous monitoring of resource consumption. The book provides a clear overview of how machine learning can be used to analyze remote sensing data to monitor the key parameters, below, at, and above the surface. It not only offers insights into the approaches, but also allows readers to learn about the challenges and issues associated with the digital mapping of these parameters and to gain a better understanding of the selection of data to represent soil-landscape relationships as well as the complex and interconnected links between soil-landscape parameters under a range of soil and climatic conditions. Lastly, the book sheds light on using the network of satellite-based Earth observations to provide solutions toward smart farming and smart land management.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 164 pp. Englisch. Nº de ref. del artículo: 9789811532405

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Garg, Pradeep Kumar; Garg, Rahul Dev; Shukla, Gaurav; Srivastava, Hari Shanker
Publicado por Springer, 2021
ISBN 10: 9811532400 ISBN 13: 9789811532405
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26384592247

Contactar al vendedor

Comprar nuevo

EUR 208,89
Convertir moneda
Gastos de envío: EUR 9,79
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Garg, Pradeep Kumar; Garg, Rahul Dev; Shukla, Gaurav; Srivastava, Hari Shanker
Publicado por Springer, 2021
ISBN 10: 9811532400 ISBN 13: 9789811532405
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Apr0412070088599

Contactar al vendedor

Comprar nuevo

EUR 156,19
Convertir moneda
Gastos de envío: EUR 63,85
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Garg, Pradeep Kumar; Garg, Rahul Dev; Shukla, Gaurav; Srivastava, Hari Shanker
Publicado por Springer, 2021
ISBN 10: 9811532400 ISBN 13: 9789811532405
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 379311784

Contactar al vendedor

Comprar nuevo

EUR 218,68
Convertir moneda
Gastos de envío: EUR 10,15
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Existen otras 2 copia(s) de este libro

Ver todos los resultados de su búsqueda