The nature of time in a nonautonomous dynamical system is very different from that in autonomous systems, which depend only on the time that has elapsed since starting rather than on the actual time itself. Consequently, limiting objects may not exist in actual time as in autonomous systems. New concepts of attractors in nonautonomous dynamical system are thus required.
In addition, the definition of a dynamical system itself needs to be generalised to the nonautonomous context. Here two possibilities are considered: two-parameter semigroups or processes and the skew product flows. Their attractors are defined in terms of families of sets that are mapped onto each other under the dynamics rather than a single set as in autonomous systems. Two types of attraction are now possible: pullback attraction, which depends on the behaviour from the system in the distant past, and forward attraction, which depends on the behaviour of the system in the distant future. These are generally independent of each other.
The component subsets of pullback and forward attractors exist in actual time. The asymptotic behaviour in the future limit is characterised by omega-limit sets, in terms of which form what are called forward attracting sets. They are generally not invariant in the conventional sense, but are asymptotically invariant in general and, if the future dynamics is appropriately uniform, also asymptotically negatively invariant.
Much of this book is based on lectures given by the authors in Frankfurt and Wuhan. It was written mainly when the first author held a "Thousand Expert" Professorship at the Huazhong University of Science and Technology in Wuhan.
"Sinopsis" puede pertenecer a otra edición de este libro.
Professor Peter E Kloeden has wide interests in the applications of mathematical analysis, numerical analysis, stochastic analysis and dynamical systems. He is the coauthor of several influential books on nonautonomous dynamical systems, metric spaces of fuzzy sets, and in particular Numerical Solutions of Stochastic Differential Equations (with E Platen) published by Springer in 1992. Professor Kloeden is a Fellow of the Society of Industrial and Applied Mathematics. He was awarded the W T & Idalia Reid Prize from Society of Applied and Industrial Mathematics in 2006. His current interests focus on nonautonomous and random dynamical systems and their applications in the biological sciences. Professor Meihua Yang graduated from Lanzhou University in 2006 with a doctoral degree in mathematics and then held a postdoctoral position Nanjing University. Since 2011 she has been employed as a professor by School of Mathematics and Statistics at then Huazhong University of Science and Technology in Wuhan, where she is now professor of mathematics. Her main research interests are in infinite dimensional dynamical systems, especially in random and nonautonomous dynamical systems and their applications.
The nature of time in a nonautonomous dynamical system is very different from that in autonomous systems, which depend only on the time that has elapsed since starting rather than on the actual time itself. Consequently, limiting objects may not exist in actual time as in autonomous systems. New concepts of attractors in nonautonomous dynamical system are thus required.
In addition, the definition of a dynamical system itself needs to be generalised to the nonautonomous context. Here two possibilities are considered: two-parameter semigroups or processes and the skew product flows. Their attractors are defined in terms of families of sets that are mapped onto each other under the dynamics rather than a single set as in autonomous systems. Two types of attraction are now possible: pullback attraction, which depends on the behaviour from the system in the distant past, and forward attraction, which depends on the behaviour of the system in the distant future. These are generally independent of each other.
The component subsets of pullback and forward attractors exist in actual time. The asymptotic behaviour in the future limit is characterised by omega-limit sets, in terms of which form what are called forward attracting sets. They are generally not invariant in the conventional sense, but are asymptotically invariant in general and, if the future dynamics is appropriately uniform, also asymptotically negatively invariant.
Much of this book is based on lectures given by the authors in Frankfurt and Wuhan. It was written mainly when the first author held a "Thousand Expert" Professorship at the Huazhong University of Science and Technology in Wuhan.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 65,07 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-181417
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 390589194
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26389043413
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18389043423
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: CW-9789811228650
Cantidad disponible: 15 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789811228650
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: CW-9789811228650
Cantidad disponible: 15 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-290785
Cantidad disponible: 1 disponibles
Librería: suffolkbooks, Center moriches, NY, Estados Unidos de America
hardcover. Condición: Very Good. Fast Shipping - Safe and Secure 7 days a week! Nº de ref. del artículo: 3TWOWA002FIG
Cantidad disponible: 1 disponibles
Librería: suffolkbooks, Center moriches, NY, Estados Unidos de America
hardcover. Condición: Good. Fast Shipping - Safe and Secure 7 days a week! Nº de ref. del artículo: 3TWOWA002FIA
Cantidad disponible: 1 disponibles