These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume “scissors-congruent”, i.e. can they be subdivided into finitely many pairwise congruent pieces? The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of groups, algebraic K-theory, characteristic classes for flat bundles, and invariants for hyperbolic manifolds. Some of the material, particularly in the chapters on projective configurations, is published here for the first time.
"Sinopsis" puede pertenecer a otra edición de este libro.
These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume "scissors-congruent", i.e. can they be subdivided into finitely many pairwise congruent pieces? The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of groups, algebraic K-theory, characteristic classes for flat bundles, and invariants for hyperbolic manifolds. Some of the material, particularly in the chapters on projective configurations, is published here for the first time.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 9,21 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Plurabelle Books Ltd, Cambridge, Reino Unido
Paperback. Condición: As New. Series: Nankai Tracts in Mathematics. viii 168p paperback, amber and blue covers, like new condition, a fresh copy, firm binding, clean and neat pages, text and mathematical notation very clear and sharp, an excellent copy Language: English Weight (g): 250. Nº de ref. del artículo: 233399
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 931766
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 931766-n
Cantidad disponible: 1 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-24897
Cantidad disponible: 5 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 168 pages. 8.25x6.00x0.50 inches. In Stock. Nº de ref. del artículo: __9810245084
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 931766
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 931766-n
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In English. Nº de ref. del artículo: ria9789810245085_new
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - These lecture notes are based on a series of lectures given at the Nankai Institute of Mathematics in the fall of 1998. They provide an overview of the work of the author and the late Chih-Han Sah on various aspects of Hilbert's Third Problem: Are two Euclidean polyhedra with the same volume ¿scissors-congruent¿, i.e. can they be subdivided into finitely many pairwise congruent pieces The book starts from the classical solution of this problem by M Dehn. But generalization to higher dimensions and other geometries quickly leads to a great variety of mathematical topics, such as homology of groups, algebraic K-theory, characteristic classes for flat bundles, and invariants for hyperbolic manifolds. Some of the material, particularly in the chapters on projective configurations, is published here for the first time. Nº de ref. del artículo: 9789810245085
Cantidad disponible: 1 disponibles