Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied.
"Sinopsis" puede pertenecer a otra edición de este libro.
Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied.
This book combines a most interesting area of study, celestial mechanics, with modern geometrical methods in physics. According to recently developed views and research, one of the basic qualitative characteristics of an integrable Hamiltonian system is a structure of the Liouville foliation. A number of interesting results have been obtained. In particular, some of the constructed topological invariants did not appear in integrable cases investigated by many researchers earlier on. The topology of the isoenergy surfaces is also strongly different from what authors presented before. Some new topological effects in the problems of dynamics on spaces of constant curvature have been discovered. At present there are no other books published in this particular area.
This book is intended for specialists and post-graduate students in celestial mechanics, differential geometry and applications, and Hamiltonian mechanics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior . Nº de ref. del artículo: 5820232
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied. 200 pp. Englisch. Nº de ref. del artículo: 9789048163823
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied. Nº de ref. del artículo: 9789048163823
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Introd uction The problem of integrability or nonintegrability of dynamical systems is one of the central problems of mathematics and mechanics. Integrable cases are of considerable interest, since, by examining them, one can study general laws of behavior for the solutions of these systems. The classical approach to studying dynamical systems assumes a search for explicit formulas for the solutions of motion equations and then their analysis. This approach stimulated the development of new areas in mathematics, such as the al gebraic integration and the theory of elliptic and theta functions. In spite of this, the qualitative methods of studying dynamical systems are much actual. It was Poincare who founded the qualitative theory of differential equa tions. Poincare, working out qualitative methods, studied the problems of celestial mechanics and cosmology in which it is especially important to understand the behavior of trajectories of motion, i.e., the solutions of differential equations at infinite time. Namely, beginning from Poincare systems of equations (in connection with the study of the problems of ce lestial mechanics), the right-hand parts of which don't depend explicitly on the independent variable of time, i.e., dynamical systems, are studied.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 200 pp. Englisch. Nº de ref. del artículo: 9789048163823
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 196. Nº de ref. del artículo: 263105393
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 196. Nº de ref. del artículo: 5823918
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 196. Nº de ref. del artículo: 183105403
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 184 pages. 9.50x6.50x0.46 inches. In Stock. Nº de ref. del artículo: __904816382X
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 184 pages. 9.50x6.50x0.46 inches. In Stock. Nº de ref. del artículo: zk904816382X
Cantidad disponible: 1 disponibles