Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]).
The book is devoted to the theory of pairs of compact convex sets and in particular to the problem of finding different types of minimal representants of a pair of nonempty compact convex subsets of a locally convex vector space in the sense of the Rådström-Hörmander Theory. Minimal pairs of compact convex sets arise naturally in different fields of mathematics, as for instance in non-smooth analysis, set-valued analysis and in the field of combinatorial convexity.
In the first three chapters of the book the basic facts about convexity, mixed volumes and the Rådström-Hörmander lattice are presented. Then, a comprehensive theory on inclusion-minimal representants of pairs of compact convex sets is given. Special attention is given to the two-dimensional case, where the minimal pairs are uniquely determined up to translations. This fact is not true in higher dimensional spaces and leads to a beautiful theory on the mutual interactions between minimality under constraints, separation and decomposition of convex sets, convexificators and invariants of minimal pairs.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,65 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,57 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110337533
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9789048161492
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9789048161492_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]). 308 pp. Englisch. Nº de ref. del artículo: 9789048161492
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Pairs of compact convex sets arise in the quasidifferential calculus of V.F. Demyanov and A.M. Rubinov as sub- and superdifferentials of quasidifferen tiable functions (see [26]) and in the formulas for the numerical evaluation of the Aumann-Integral which were recently introduced in a series of papers by R. Baier and F. Lempio (see [4], [5], [10] and [9]) and R. Baier and E.M. Farkhi [6], [7], [8]. In the field of combinatorial convexity G. Ewald et al. [36] used an interesting construction called virtual polytope, which can also be represented as a pair of polytopes for the calculation of the combinatorial Picard group of a fan. Since in all mentioned cases the pairs of compact con vex sets are not uniquely determined, minimal representations are of special to the existence of minimal pairs of compact importance. A problem related convex sets is the existence of reduced pairs of convex bodies, which has been studied by Chr. Bauer (see [14]). Nº de ref. del artículo: 9789048161492
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 308 pages. 9.25x6.10x0.70 inches. In Stock. Nº de ref. del artículo: x-9048161495
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Preface. I: Convexity. 1. Convex Sets and Sublinearity. 2. Topological Vector Spaces. 3. Compact Convex Sets. II: Minimal Pairs. 4. Minimal Pairs of Convex Sets. 5. The Cardinality of Minimal Pairs. 6. Minimality under Constraints. 7. Symmetries. 8. Decompo. Nº de ref. del artículo: 5820001
Cantidad disponible: Más de 20 disponibles
Librería: dsmbooks, Liverpool, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: D7F9-0-M-9048161495-6
Cantidad disponible: 1 disponibles