Dask has revolutionized parallel computing for Python, empowering data scientists to accelerate their workflows. This comprehensive guide unravels the intricacies of Dask to help you harness its capabilities for machine learning and data analysis.
Across 10 chapters, you'll master Dask's fundamentals, architecture, and integration with Python's scientific computing ecosystem.Step-by-step tutorials demonstrate parallel mapping, task scheduling, and leveraging Dask arrays for NumPy workloads.You'll discover how Dask seamlessly scales Pandas, Scikit-Learn, PyTorch, and other libraries for large datasets.
Dedicated chapters explore scaling regression, classification, hyperparameter tuning, feature engineering, and more with clear examples. You'll also learn to tap into the power of GPUs with Dask, RAPIDS, and Google JAX for orders of magnitude speedups.
This book places special emphasis on practical use cases related to scalability and distributed computing. You'll learn Dask patterns for cluster computing, managing resources efficiently, and robust data pipelines. The advanced chapters on DaskML and deep learning showcase how to build scalable models with PyTorch and TensorFlow.
With this book, you'll gain practical skills to:
Packed with hands-on examples and expert insights, this book provides the complete toolkit to harness Dask's capabilities. It will empower Python programmers, data scientists, and machine learning engineers to achieve faster workflows and operationalize parallel computing.
"Sinopsis" puede pertenecer a otra edición de este libro.
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Parallel Python with Dask: Perform distributed computing, concurrent programming and manage large dataset. Book. Nº de ref. del artículo: BBS-9788119177653
Cantidad disponible: 5 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9788119177653
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9788119177653
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9788119177653
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Unlock the Power of Parallel Python with Dask: A Perfect Learning Guide for Aspiring Data ScientistsDask has revolutionized parallel computing for Python, empowering data scientists to accelerate their workflows. This comprehensive guide unravels the intricacies of Dask to help you harness its capabilities for machine learning and data analysis.Across 10 chapters, you'll master Dask's fundamentals, architecture, and integration with Python's scientific computing ecosystem. Step-by-step tutorials demonstrate parallel mapping, task scheduling, and leveraging Dask arrays for NumPy workloads. You'll discover how Dask seamlessly scales Pandas, Scikit-Learn, PyTorch, and other libraries for large datasets.Dedicated chapters explore scaling regression, classification, hyperparameter tuning, feature engineering, and more with clear examples. You'll also learn to tap into the power of GPUs with Dask, RAPIDS, and Google JAX for orders of magnitude speedups.This book places special emphasis on practical use cases related to scalability and distributed computing. You'll learn Dask patterns for cluster computing, managing resources efficiently, and robust data pipelines. The advanced chapters on DaskML and deep learning showcase how to build scalable models with PyTorch and TensorFlow.With this book, you'll gain practical skills to:Accelerate Python workloads with parallel mapping and task schedulingSpeed up NumPy, Pandas, Scikit-Learn, PyTorch, and other librariesBuild scalable machine learning pipelines for large datasetsLeverage GPUs efficiently via Dask, RAPIDS and JAXManage Dask clusters and workflows for distributed computingStreamline deep learning models with DaskML and DL frameworksPacked with hands-on examples and expert insights, this book provides the complete toolkit to harness Dask's capabilities. It will empower Python programmers, data scientists, and machine learning engineers to achieve faster workflows and operationalize parallel computing.Table of ContentIntroduction to DaskDask FundamentalsBatch Data Parallel Processing with DaskDistributed Systems and DaskAdvanced Dask: APIs and Building BlocksDask with PandasDask with Scikit-learnDask and PyTorchDask with GPUsScaling Machine Learning Projects with Dask 174 pp. Englisch. Nº de ref. del artículo: 9788119177653
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26398556207
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 397853680
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18398556197
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Unlock the Power of Parallel Python with Dask: A Perfect Learning Guide for Aspiring Data ScientistsDask has revolutionized parallel computing for Python, empowering data scientists to accelerate their workflows. This comprehensive guide unravels the intricacies of Dask to help you harness its capabilities for machine learning and data analysis.Across 10 chapters, you'll master Dask's fundamentals, architecture, and integration with Python's scientific computing ecosystem. Step-by-step tutorials demonstrate parallel mapping, task scheduling, and leveraging Dask arrays for NumPy workloads. You'll discover how Dask seamlessly scales Pandas, Scikit-Learn, PyTorch, and other libraries for large datasets.Dedicated chapters explore scaling regression, classification, hyperparameter tuning, feature engineering, and more with clear examples. You'll also learn to tap into the power of GPUs with Dask, RAPIDS, and Google JAX for orders of magnitude speedups.This book places special emphasis on practical use cases related to scalability and distributed computing. You'll learn Dask patterns for cluster computing, managing resources efficiently, and robust data pipelines. The advanced chapters on DaskML and deep learning showcase how to build scalable models with PyTorch and TensorFlow.With this book, you'll gain practical skills to:Accelerate Python workloads with parallel mapping and task schedulingSpeed up NumPy, Pandas, Scikit-Learn, PyTorch, and other librariesBuild scalable machine learning pipelines for large datasetsLeverage GPUs efficiently via Dask, RAPIDS and JAXManage Dask clusters and workflows for distributed computingStreamline deep learning models with DaskML and DL frameworksPacked with hands-on examples and expert insights, this book provides the complete toolkit to harness Dask's capabilities. It will empower Python programmers, data scientists, and machine learning engineers to achieve faster workflows and operationalize parallel computing.Table of ContentIntroduction to DaskDask FundamentalsBatch Data Parallel Processing with DaskDistributed Systems and DaskAdvanced Dask: APIs and Building BlocksDask with PandasDask with Scikit-learnDask and PyTorchDask with GPUsScaling Machine Learning Projects with DaskLibri GmbH, Europaallee 1, 36244 Bad Hersfeld 174 pp. Englisch. Nº de ref. del artículo: 9788119177653
Cantidad disponible: 1 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Parallel Python with Dask | Perform distributed computing, concurrent programming and manage large dataset | Tim Peters | Taschenbuch | Englisch | 2023 | GitforGits | EAN 9788119177653 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 127867738
Cantidad disponible: 5 disponibles