In the dynamic landscape of Intelligent Transportation Systems, this research pioneers strategies for efficient route prediction, particularly vital for emergency vehicles (EVs). The HL-CTP model employs incremental learning, enhancing accuracy by fine-tuning predictions based on historical data. Complementing this, the SG-TSE model adjusts traffic lights, minimizing the negative impact of congestion on both regular traffic and EV preemption. Recognizing the limitations of traditional machine learning in Internet of Vehicles networks, our third objective utilizes YOLOv4-based traffic monitoring, incorporating the Kalman filter for real-time IoV environment modeling. Policymakers can leverage this data for informed decisions, improving transportation efficiency, reducing congestion, and enhancing safety. Integrating RSUs efficiently manages network resources, contributes to smarter transportation systems, and elevates urban living standards. In conclusion, this research not only advances route prediction and EV preemption but also adds value to the broader landscape of intelligent and responsive transportation systems, benefiting society at large.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 64 pp. Englisch. Nº de ref. del artículo: 9786207450404
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In the dynamic landscape of Intelligent Transportation Systems, this research pioneers strategies for efficient route prediction, particularly vital for emergency vehicles (EVs). The HL-CTP model employs incremental learning, enhancing accuracy by fine-tuning predictions based on historical data. Complementing this, the SG-TSE model adjusts traffic lights, minimizing the negative impact of congestion on both regular traffic and EV preemption. Recognizing the limitations of traditional machine learning in Internet of Vehicles networks, our third objective utilizes YOLOv4-based traffic monitoring, incorporating the Kalman filter for real-time IoV environment modeling. Policymakers can leverage this data for informed decisions, improving transportation efficiency, reducing congestion, and enhancing safety. Integrating RSUs efficiently manages network resources, contributes to smarter transportation systems, and elevates urban living standards. In conclusion, this research not only advances route prediction and EV preemption but also adds value to the broader landscape of intelligent and responsive transportation systems, benefiting society at large. Nº de ref. del artículo: 9786207450404
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. In the dynamic landscape of Intelligent Transportation Systems, this research pioneers strategies for efficient route prediction, particularly vital for emergency vehicles (EVs). The HL-CTP model employs incremental learning, enhancing accuracy by fine-tuni. Nº de ref. del artículo: 1330763180
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26400850428
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 395559459
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18400850422
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -In the dynamic landscape of Intelligent Transportation Systems, this research pioneers strategies for efficient route prediction, particularly vital for emergency vehicles (EVs). The HL-CTP model employs incremental learning, enhancing accuracy by fine-tuning predictions based on historical data. Complementing this, the SG-TSE model adjusts traffic lights, minimizing the negative impact of congestion on both regular traffic and EV preemption. Recognizing the limitations of traditional machine learning in Internet of Vehicles networks, our third objective utilizes YOLOv4-based traffic monitoring, incorporating the Kalman filter for real-time IoV environment modeling. Policymakers can leverage this data for informed decisions, improving transportation efficiency, reducing congestion, and enhancing safety. Integrating RSUs efficiently manages network resources, contributes to smarter transportation systems, and elevates urban living standards. In conclusion, this research not only advances route prediction and EV preemption but also adds value to the broader landscape of intelligent and responsive transportation systems, benefiting society at large.Books on Demand GmbH, Überseering 33, 22297 Hamburg 64 pp. Englisch. Nº de ref. del artículo: 9786207450404
Cantidad disponible: 2 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: New. New. book. Nº de ref. del artículo: ERICA800620745040X6
Cantidad disponible: 1 disponibles