Machine Learning Classification of Epileptic Seizures Based on Electroencephalogram using Third-Ordered Cumulants and Adaptive Fractal Analysis Techniques1 IntroductionEpilepsy is one of the serious neurological diseases in the world. Indeed, early detection of epileptic seizures will extend the life span of epileptic patients. In this regard, a lot of efforts has been done to predict epileptic seizures based on electroencephalography (EEG) signals. In literature, there are many feature-based seizure classification methods quoted. No method is proved perfectly in capturing a standard set of features with the dynamics of signals. It is a common neurological disorder caused by the abnormally rapid release of brain nerve cells that is characterized by seizures. The scalp or intracranial Electroencephalogram (EEG) signals obtained in the clinic typically exhibit characteristics such as chaos, nonlinearity, etc.Deep neural networks have made significant advances in the field of machine learning during the last era. The model can learn effective representations from raw data in both supervised and unsupervised contexts by creating a hierarchical or "deep" structure.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 4,66 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9786206152965_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9786206152965
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9786206152965
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Machine Learning Classification of Epileptic Seizures Based on Electroencephalogram using Third-Ordered Cumulants and Adaptive Fractal Analysis Techniques1 IntroductionEpilepsy is one of the serious neurological diseases in the world. Indeed, early detectio. Nº de ref. del artículo: 863316528
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9786206152965
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine Learning Classification of Epileptic Seizures Based on Electroencephalogram using Third-Ordered Cumulants and Adaptive Fractal Analysis Techniques1 IntroductionEpilepsy is one of the serious neurological diseases in the world. Indeed, early detection of epileptic seizures will extend the life span of epileptic patients. In this regard, a lot of efforts has been done to predict epileptic seizures based on electroencephalography (EEG) signals. In literature, there are many feature-based seizure classification methods quoted. No method is proved perfectly in capturing a standard set of features with the dynamics of signals. It is a common neurological disorder caused by the abnormally rapid release of brain nerve cells that is characterized by seizures. The scalp or intracranial Electroencephalogram (EEG) signals obtained in the clinic typically exhibit characteristics such as chaos, nonlinearity, etc.Deep neural networks have made significant advances in the field of machine learning during the last era. The model can learn effective representations from raw data in both supervised and unsupervised contexts by creating a hierarchical or 'deep' structure. 128 pp. Englisch. Nº de ref. del artículo: 9786206152965
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Machine Learning Classification of Epileptic Seizures Based on Electroencephalogram using Third-Ordered Cumulants and Adaptive Fractal Analysis Techniques1 IntroductionEpilepsy is one of the serious neurological diseases in the world. Indeed, early detection of epileptic seizures will extend the life span of epileptic patients. In this regard, a lot of efforts has been done to predict epileptic seizures based on electroencephalography (EEG) signals. In literature, there are many feature-based seizure classification methods quoted. No method is proved perfectly in capturing a standard set of features with the dynamics of signals. It is a common neurological disorder caused by the abnormally rapid release of brain nerve cells that is characterized by seizures. The scalp or intracranial Electroencephalogram (EEG) signals obtained in the clinic typically exhibit characteristics such as chaos, nonlinearity, etc.Deep neural networks have made significant advances in the field of machine learning during the last era. The model can learn effective representations from raw data in both supervised and unsupervised contexts by creating a hierarchical or 'deep' structure. Nº de ref. del artículo: 9786206152965
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26396420882
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 399988941
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18396420888
Cantidad disponible: 4 disponibles