Brain-computer interfaces (BCIs) hold great promise in biomedical engineering, particularly for diagnosing critical diseases. Motor imagery (MI) EEG classification, a key BCI process, faces challenges due to the complexity and non-stationary nature of EEG signals. These signals, recorded via electrodes, are digitized and analyzed using feature extraction techniques like FFT, STFT, CSP, and wavelet transforms, with wavelet transform being the most effective.This study proposes a deep neural network-based classification algorithm with teacher-learning-based optimization for feature refinement. Tested on a standard BCI dataset in MATLAB, the algorithm surpasses Bayesian and ensemble machine learning classifiers, enhancing classification accuracy and BCI system performance.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 5,19 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9786205492451_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9786205492451
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 72 pp. Englisch. Nº de ref. del artículo: 9786205492451
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Singh PriyankaPriyanka Singh is an assistant professor in the Department of Computer Science and Engineering at Lakshmi Narain College of Technology Excellence, Bhopal. She holds an M.Tech. in Software Systems and is pursuing a Ph.D. Nº de ref. del artículo: 2098218191
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Brain-computer interfaces (BCIs) hold great promise in biomedical engineering, particularly for diagnosing critical diseases. Motor imagery (MI) EEG classification, a key BCI process, faces challenges due to the complexity and non-stationary nature of EEG signals. These signals, recorded via electrodes, are digitized and analyzed using feature extraction techniques like FFT, STFT, CSP, and wavelet transforms, with wavelet transform being the most effective.This study proposes a deep neural network-based classification algorithm with teacher-learning-based optimization for feature refinement. Tested on a standard BCI dataset in MATLAB, the algorithm surpasses Bayesian and ensemble machine learning classifiers, enhancing classification accuracy and BCI system performance. Nº de ref. del artículo: 9786205492451
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26404172306
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 408981965
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Brain-computer interfaces (BCIs) hold great promise in biomedical engineering, particularly for diagnosing critical diseases. Motor imagery (MI) EEG classification, a key BCI process, faces challenges due to the complexity and non-stationary nature of EEG signals. These signals, recorded via electrodes, are digitized and analyzed using feature extraction techniques like FFT, STFT, CSP, and wavelet transforms, with wavelet transform being the most effective.This study proposes a deep neural network-based classification algorithm with teacher-learning-based optimization for feature refinement. Tested on a standard BCI dataset in MATLAB, the algorithm surpasses Bayesian and ensemble machine learning classifiers, enhancing classification accuracy and BCI system performance.Books on Demand GmbH, Überseering 33, 22297 Hamburg 72 pp. Englisch. Nº de ref. del artículo: 9786205492451
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18404172312
Cantidad disponible: 4 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. Brain-computer interfaces (BCIs) hold great promise in biomedical engineering, particularly for diagnosing critical diseases. Motor imagery (MI) EEG classification, a key BCI process, faces challenges due to the complexity and non-stationary nature of EEG signals. These signals, recorded via electrodes, are digitized and analyzed using feature extraction techniques like FFT, STFT, CSP, and wavelet transforms, with wavelet transform being the most effective.This study proposes a deep neural network-based classification algorithm with teacher-learning-based optimization for feature refinement. Tested on a standard BCI dataset in MATLAB, the algorithm surpasses Bayesian and ensemble machine learning classifiers, enhancing classification accuracy and BCI system performance. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9786205492451
Cantidad disponible: 1 disponibles