Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting.
"Sinopsis" puede pertenecer a otra edición de este libro.
Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting.
The author, Pradip M. Kyada has completed his B.Tech (Agri. Engg.) in 2011 from College of Agri. Engg. and Tech., J.A.U., Junagadh (Gujarat). He also obtained M. Tech. (Soil and Water Cons. Engg.) degree in 2013 from GBPUAT, Pantnagar (Uttarakhand). He is working as a Scientist (Agri. Engg.) at Krishi Vigyan Kendra, Bhavnagar (Gujarat), India.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting. 100 pp. Englisch. Nº de ref. del artículo: 9786202011600
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kyada PradipThe author, Pradip M. Kyada has completed his B.Tech (Agri. Engg.) in 2011 from College of Agri. Engg. and Tech., J.A.U., Junagadh (Gujarat). He also obtained M. Tech. (Soil and Water Cons. Engg.) degree in 2013 from GBPU. Nº de ref. del artículo: 385901506
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting. Nº de ref. del artículo: 9786202011600
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Rainfall forecasting still represents an extremely important issue in hydrology. On the other hand, rainfall is one of the most complicated effective hydrologic processes in runoff prediction. In the present study an attempt has been made to develop artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models for forecasting of daily rainfall for monsoon period of Junagadh, Gujarat, India. The data of period (1st June to 30th October) of years 1979-1981, 1984-1989 and 1991-2007 were used to train the models and data of years 2008-2011 were used for test the models. The sensitivity analysis was used to identify the most important parameter for rainfall prediction. In ANN model, back-propagation algorithm and sigmoid activation function used to train and test the models while in ANFIS models, gaussian and generalized bell membership function are used. It was found from the study that the performance of the ANN double hidden layer model with four input parameters is better than the ANFIS model. The sensitivity analysis indicated that the most important input parameter besides rainfall itself is the vapour pressure in rainfall forecasting.Books on Demand GmbH, Überseering 33, 22297 Hamburg 100 pp. Englisch. Nº de ref. del artículo: 9786202011600
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 100 pages. 8.66x5.91x0.23 inches. In Stock. Nº de ref. del artículo: zk6202011602
Cantidad disponible: 1 disponibles