Artículos relacionados a Gaussian Mixture Model: Application to Medical Image...

Gaussian Mixture Model: Application to Medical Image Classification - Tapa blanda

 
9786139987955: Gaussian Mixture Model: Application to Medical Image Classification

Sinopsis

Gaussian Mixture Model (GMM) is the probabilistic model, it works well with the classification and parameter estimation strategy. In this Maximum Likelihood Estimation (MLE) based on Expectation Maximization (EM) is being used for the parameter estimation approach and the estimated parameters are being used for the training and the testing of the images for their normality and the abnormality. With the mean and the covariance calculated as the parameters they are used in the Gaussian Mixture Model (GMM) based training of the classifier. Support Vector Machine a discriminative classifier and the Gaussian Mixture Model a generative model classifier are the two most popular techniques used in this work. The performance of the classification strategy of both the classifiers used have a better proficiency when compared to the other classifiers. By combining the SVM and GMM we could be able to classify at a better level since estimating the parameters through the GMM has a very few amount of features and hence it is not needed to use any of the feature reduction techniques.

"Sinopsis" puede pertenecer a otra edición de este libro.

Comprar usado

Zustand: Hervorragend | Sprache...
Ver este artículo

EUR 105,00 gastos de envío desde Alemania a Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 23,00 gastos de envío desde Alemania a Estados Unidos de America

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Gaussian Mixture Model: Application to Medical Image...

Imagen del vendedor

A. Vignesh Kumar
ISBN 10: 6139987954 ISBN 13: 9786139987955
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Gaussian Mixture Model (GMM) is the probabilistic model, it works well with the classification and parameter estimation strategy. In this Maximum Likelihood Estimation (MLE) based on Expectation Maximization (EM) is being used for the parameter estimation approach and the estimated parameters are being used for the training and the testing of the images for their normality and the abnormality. With the mean and the covariance calculated as the parameters they are used in the Gaussian Mixture Model (GMM) based training of the classifier. Support Vector Machine a discriminative classifier and the Gaussian Mixture Model a generative model classifier are the two most popular techniques used in this work. The performance of the classification strategy of both the classifiers used have a better proficiency when compared to the other classifiers. By combining the SVM and GMM we could be able to classify at a better level since estimating the parameters through the GMM has a very few amount of features and hence it is not needed to use any of the feature reduction techniques. 56 pp. Englisch. Nº de ref. del artículo: 9786139987955

Contactar al vendedor

Comprar nuevo

EUR 39,90
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

A. Vignesh Kumar|R. Harikumar
Publicado por LAP LAMBERT Academic Publishing, 2018
ISBN 10: 6139987954 ISBN 13: 9786139987955
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kumar A. VigneshA. Vignesh Kumar, Completed M.E(CSE) & doing Ph.D from Anna University,Chennai and having 5 Years of Academic Experience.Gaussian Mixture Model (GMM) is the probabilistic model, it works well with the classificati. Nº de ref. del artículo: 266932471

Contactar al vendedor

Comprar nuevo

EUR 34,25
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kumar, A. Vignesh/ Harikumar, R.
Publicado por LAP Lambert Academic Publishing, 2019
ISBN 10: 6139987954 ISBN 13: 9786139987955
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 8.70x6.02x0.28 inches. In Stock. Nº de ref. del artículo: zk6139987954

Contactar al vendedor

Comprar nuevo

EUR 67,30
Convertir moneda
Gastos de envío: EUR 28,75
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

A. Vignesh Kumar
ISBN 10: 6139987954 ISBN 13: 9786139987955
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Gaussian Mixture Model (GMM) is the probabilistic model, it works well with the classification and parameter estimation strategy. In this Maximum Likelihood Estimation (MLE) based on Expectation Maximization (EM) is being used for the parameter estimation approach and the estimated parameters are being used for the training and the testing of the images for their normality and the abnormality. With the mean and the covariance calculated as the parameters they are used in the Gaussian Mixture Model (GMM) based training of the classifier. Support Vector Machine a discriminative classifier and the Gaussian Mixture Model a generative model classifier are the two most popular techniques used in this work. The performance of the classification strategy of both the classifiers used have a better proficiency when compared to the other classifiers. By combining the SVM and GMM we could be able to classify at a better level since estimating the parameters through the GMM has a very few amount of features and hence it is not needed to use any of the feature reduction techniques.Books on Demand GmbH, Überseering 33, 22297 Hamburg 56 pp. Englisch. Nº de ref. del artículo: 9786139987955

Contactar al vendedor

Comprar nuevo

EUR 39,90
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

A. Vignesh Kumar
Publicado por LAP LAMBERT Academic Publishing, 2018
ISBN 10: 6139987954 ISBN 13: 9786139987955
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Gaussian Mixture Model (GMM) is the probabilistic model, it works well with the classification and parameter estimation strategy. In this Maximum Likelihood Estimation (MLE) based on Expectation Maximization (EM) is being used for the parameter estimation approach and the estimated parameters are being used for the training and the testing of the images for their normality and the abnormality. With the mean and the covariance calculated as the parameters they are used in the Gaussian Mixture Model (GMM) based training of the classifier. Support Vector Machine a discriminative classifier and the Gaussian Mixture Model a generative model classifier are the two most popular techniques used in this work. The performance of the classification strategy of both the classifiers used have a better proficiency when compared to the other classifiers. By combining the SVM and GMM we could be able to classify at a better level since estimating the parameters through the GMM has a very few amount of features and hence it is not needed to use any of the feature reduction techniques. Nº de ref. del artículo: 9786139987955

Contactar al vendedor

Comprar nuevo

EUR 40,89
Convertir moneda
Gastos de envío: EUR 60,51
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

A. Vignesh Kumar, R. Harikumar
Publicado por LAP LAMBERT Academic Publishing, 2018
ISBN 10: 6139987954 ISBN 13: 9786139987955
Antiguo o usado Tapa blanda

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 33514047/1

Contactar al vendedor

Comprar usado

EUR 16,73
Convertir moneda
Gastos de envío: EUR 105,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito