Supervised learning deals with the problem of discovering models from data as relationships between input and output attributes. Two types of models are distinguished: regression models (for continuous output attributes) and classification models (for discrete output attributes). This thesis addresses both regression and classification problems with an emphasis on new applications and on presenting improved evolutionary techniques. Such techniques include Gene Expression Programming (classical and its adaptive version), Genetic Programming, and the hypernetwork model of learning (classical and its evolutionary version). Such methods can be successfully applied to many problems from various domains. This thesis presents applications for symbolic regression for inverse problems, quantum circuit design, modeling of dynamic processes, and forecasting price movement.
"Sinopsis" puede pertenecer a otra edición de este libro.
Supervised learning deals with the problem of discovering models from data as relationships between input and output attributes. Two types of models are distinguished: regression models (for continuous output attributes) and classification models (for discrete output attributes). This thesis addresses both regression and classification problems with an emphasis on new applications and on presenting improved evolutionary techniques. Such techniques include Gene Expression Programming (classical and its adaptive version), Genetic Programming, and the hypernetwork model of learning (classical and its evolutionary version). Such methods can be successfully applied to many problems from various domains. This thesis presents applications for symbolic regression for inverse problems, quantum circuit design, modeling of dynamic processes, and forecasting price movement.
Elena Băutu received her Ph.D. degree in Artificial Intelligence in 2010 from the "Alexandru Ioan Cuza" University (Romania). Her doctoral studies covered the application of nature inspired meta-heuristics and learning models to data mining problems, focusing on time series modeling and forecasting problems.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Bautu ElenaElena Bautu received her Ph.D. degree in Artificial Intelligence in 2010 from the Alexandru Ioan Cuza University (Romania). Her doctoral studies covered the application of nature inspired meta-heuristics and learning mod. Nº de ref. del artículo: 5521926
Cantidad disponible: Más de 20 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Intelligent Techniques for Data Modeling Problems | Nature inspired meta-heuristics and learning models applied to time series modeling and forecasting | Elena B utu | Taschenbuch | Englisch | LAP Lambert Academic Publishing | EAN 9783848434794 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Nº de ref. del artículo: 106577143
Cantidad disponible: 5 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book. Nº de ref. del artículo: ERICA75838484347925
Cantidad disponible: 1 disponibles