The author investigated the application of Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) to the task of signature verification. Traditional RNNs are capable of modeling dynamical systems with hidden states; they have been successfully applied to domains ranging from financial forecasting to control and speech recognition. This manuscript is the result of successfully applying on-line signature time series data to traditional LSTM, LSTM with forget gates and LSTM with peephole connections algorithms originally developed by S. Hochreiter and J. Schmidhuber. It can be clearly seen in this pattern classification problem that traditional LSTM RNNs outperform LSTMs with forget gates and peephole connections. The latter also outperform traditional RNNs which cannot seem to even learn this task due to the long-term dependency problem.
"Sinopsis" puede pertenecer a otra edición de este libro.
Conrad completed his Masters Degree with Cum Laude with the Intelligent Systems Group of the Department of Computer Science at the University of the Western Cape. His research interests span Recurrent Neural Networks (RNNs) and their applications to time series prediction as well as the application thereof to Biometric technologies.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,00 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 5,13 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783846589946_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783846589946
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783846589946
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783846589946
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The author investigated the application of Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) to the task of signature verification. Traditional RNNs are capable of modeling dynamical systems with hidden states; they have been successfully applied to domains ranging from financial forecasting to control and speech recognition. This manuscript is the result of successfully applying on-line signature time series data to traditional LSTM, LSTM with forget gates and LSTM with peephole connections algorithms originally developed by S. Hochreiter and J. Schmidhuber. It can be clearly seen in this pattern classification problem that traditional LSTM RNNs outperform LSTMs with forget gates and peephole connections. The latter also outperform traditional RNNs which cannot seem to even learn this task due to the long-term dependency problem. 104 pp. Englisch. Nº de ref. del artículo: 9783846589946
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Tiflin ConradConrad completed his Masters Degree with Cum Laude with the Intelligent Systems Group of the Department of Computer Science at the University of the Western Cape. His research interests span Recurrent Neural Networks (RN. Nº de ref. del artículo: 5501659
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. LSTM Recurrent Neural Networks for Signature Verification 0.36. Book. Nº de ref. del artículo: BBS-9783846589946
Cantidad disponible: 5 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The author investigated the application of Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) to the task of signature verification. Traditional RNNs are capable of modeling dynamical systems with hidden states; they have been successfully applied to domains ranging from financial forecasting to control and speech recognition. This manuscript is the result of successfully applying on-line signature time series data to traditional LSTM, LSTM with forget gates and LSTM with peephole connections algorithms originally developed by S. Hochreiter and J. Schmidhuber. It can be clearly seen in this pattern classification problem that traditional LSTM RNNs outperform LSTMs with forget gates and peephole connections. The latter also outperform traditional RNNs which cannot seem to even learn this task due to the long-term dependency problem. Nº de ref. del artículo: 9783846589946
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783846589946
Cantidad disponible: 10 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 15978928-n
Cantidad disponible: Más de 20 disponibles