First we describe, analyze and present the theoretical derivations and the source codes for several (modified and well-known) non-linear Neural Network algorithms based on the unconstrained optimization theory and applied to supervised training networks. In addition to the indication of the relative efficiency of these algorithms in an application, we analyze their main characteristics and present the MATLAB source codes. Algorithms of this part depend on some modified variable metric updates and for the purpose of comparison, we illustrate the default values specification for each algorithm, presenting a simple non-linear test problem. Further more in this thesis we also emphasized on the conjugate gradient (CG) algorithms, which are usually used for solving nonlinear test functions and are combined with the modified back propagation (BP) algorithm yielding few new fast training multilayer Neural Network algorithms. This study deals with the determination of new search directions by exploiting the information calculated by gradient descent as well as the previous search directions.
"Sinopsis" puede pertenecer a otra edición de este libro.
First we describe, analyze and present the theoretical derivations and the source codes for several (modified and well-known) non-linear Neural Network algorithms based on the unconstrained optimization theory and applied to supervised training networks. In addition to the indication of the relative efficiency of these algorithms in an application, we analyze their main characteristics and present the MATLAB source codes. Algorithms of this part depend on some modified variable metric updates and for the purpose of comparison, we illustrate the default values specification for each algorithm, presenting a simple non-linear test problem. Further more in this thesis we also emphasized on the conjugate gradient (CG) algorithms, which are usually used for solving nonlinear test functions and are combined with the modified back propagation (BP) algorithm yielding few new fast training multilayer Neural Network algorithms. This study deals with the determination of new search directions by exploiting the information calculated by gradient descent as well as the previous search directions.
Gulnar Wasim Sadiq, was burn in 1974 kurdistan region. Complete the PhD. Degree at University of Sulaimani- College of Science, Department of Mathematics in the field Operation Research and Optimization.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 31,14 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Sadq GulnarGulnar Wasim Sadiq, was burn in 1974 kurdistan region. Complete the PhD. Degree at University of Sulaimani- College of Science, Department of Mathematics in the field Operation Research and Optimization.First we descr. Nº de ref. del artículo: 5501059
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -First we describe, analyze and present the theoretical derivations and the source codes for several (modified and well-known) non-linear Neural Network algorithms based on the unconstrained optimization theory and applied to supervised training networks. In addition to the indication of the relative efficiency of these algorithms in an application, we analyze their main characteristics and present the MATLAB source codes. Algorithms of this part depend on some modified variable metric updates and for the purpose of comparison, we illustrate the default values specification for each algorithm, presenting a simple non-linear test problem. Further more in this thesis we also emphasized on the conjugate gradient (CG) algorithms, which are usually used for solving nonlinear test functions and are combined with the modified back propagation (BP) algorithm yielding few new fast training multilayer Neural Network algorithms. This study deals with the determination of new search directions by exploiting the information calculated by gradient descent as well as the previous search directions. 156 pp. Englisch. Nº de ref. del artículo: 9783846580806
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - First we describe, analyze and present the theoretical derivations and the source codes for several (modified and well-known) non-linear Neural Network algorithms based on the unconstrained optimization theory and applied to supervised training networks. In addition to the indication of the relative efficiency of these algorithms in an application, we analyze their main characteristics and present the MATLAB source codes. Algorithms of this part depend on some modified variable metric updates and for the purpose of comparison, we illustrate the default values specification for each algorithm, presenting a simple non-linear test problem. Further more in this thesis we also emphasized on the conjugate gradient (CG) algorithms, which are usually used for solving nonlinear test functions and are combined with the modified back propagation (BP) algorithm yielding few new fast training multilayer Neural Network algorithms. This study deals with the determination of new search directions by exploiting the information calculated by gradient descent as well as the previous search directions. Nº de ref. del artículo: 9783846580806
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 156. Nº de ref. del artículo: 2698273152
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -First we describe, analyze and present the theoretical derivations and the source codes for several (modified and well-known) non-linear Neural Network algorithms based on the unconstrained optimization theory and applied to supervised training networks. In addition to the indication of the relative efficiency of these algorithms in an application, we analyze their main characteristics and present the MATLAB source codes. Algorithms of this part depend on some modified variable metric updates and for the purpose of comparison, we illustrate the default values specification for each algorithm, presenting a simple non-linear test problem. Further more in this thesis we also emphasized on the conjugate gradient (CG) algorithms, which are usually used for solving nonlinear test functions and are combined with the modified back propagation (BP) algorithm yielding few new fast training multilayer Neural Network algorithms. This study deals with the determination of new search directions by exploiting the information calculated by gradient descent as well as the previous search directions.Books on Demand GmbH, Überseering 33, 22297 Hamburg 156 pp. Englisch. Nº de ref. del artículo: 9783846580806
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 156 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. Nº de ref. del artículo: 95172703
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 156. Nº de ref. del artículo: 1898273162
Cantidad disponible: 4 disponibles
Librería: dsmbooks, Liverpool, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: D7F9-6-M-3846580805-6
Cantidad disponible: 1 disponibles