Semi-supervised learning (SSL) has grown into an important research area in machine learning, motivated by the fact that human labeling is expensive while unlabeled data are relatively easy to obtain. A basic assumption in traditional SSL is that unlabeled data and labeled data share the same distribution. However, this assumption may be incorrect when unlabeled data have a shifted covariance, or come from a related but different domain, or contain irrelevant data. With the divergence of the distribution of unlabeled data, very little academic literature exists on how to choose or adapt machine learning algorithms to different settings of unlabeled data. This book, therefore, introduces a new unified view on learning with different settings of unlabeled data. This book consists of two parts: the first part analyzes the fundamental assumptions of SSL and proposes a few efficient SSL algorithms; the second part discusses three learning frameworks to deal with other settings of unlabeled data. This book should be helpful to researchers or graduate students in areas with abundance of unlabeled data, such as computer vision, bioinformatics, web mining, and natural language processing.
"Sinopsis" puede pertenecer a otra edición de este libro.
Semi-supervised learning (SSL) has grown into an important research area in machine learning, motivated by the fact that human labeling is expensive while unlabeled data are relatively easy to obtain. A basic assumption in traditional SSL is that unlabeled data and labeled data share the same distribution. However, this assumption may be incorrect when unlabeled data have a shifted covariance, or come from a related but different domain, or contain irrelevant data. With the divergence of the distribution of unlabeled data, very little academic literature exists on how to choose or adapt machine learning algorithms to different settings of unlabeled data. This book, therefore, introduces a new unified view on learning with different settings of unlabeled data. This book consists of two parts: the first part analyzes the fundamental assumptions of SSL and proposes a few efficient SSL algorithms; the second part discusses three learning frameworks to deal with other settings of unlabeled data. This book should be helpful to researchers or graduate students in areas with abundance of unlabeled data, such as computer vision, bioinformatics, web mining, and natural language processing.
Zenglin Xu, PhD. He is currently a researcher in Department of Computer Science of Purdue University, US. His research interests include machine learning and its applications to information retrieval, web search and social computing. Irwin King and Michael R. Lyu are professors with the Chinese University of Hong Kong.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,75 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 5,16 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783843379106_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783843379106
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783843379106
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783843379106
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Xu ZenglinZenglin Xu, PhD. He is currently a researcher in Department of Computer Science of Purdue University, US. His research interests include machine learning and its applications to information retrieval, web search and social . Nº de ref. del artículo: 5467773
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Semi-supervised learning (SSL) has grown into an important research area in machine learning, motivated by the fact that human labeling is expensive while unlabeled data are relatively easy to obtain. A basic assumption in traditional SSL is that unlabeled data and labeled data share the same distribution. However, this assumption may be incorrect when unlabeled data have a shifted covariance, or come from a related but different domain, or contain irrelevant data. With the divergence of the distribution of unlabeled data, very little academic literature exists on how to choose or adapt machine learning algorithms to different settings of unlabeled data. This book, therefore, introduces a new unified view on learning with different settings of unlabeled data. This book consists of two parts: the first part analyzes the fundamental assumptions of SSL and proposes a few efficient SSL algorithms; the second part discusses three learning frameworks to deal with other settings of unlabeled data. This book should be helpful to researchers or graduate students in areas with abundance of unlabeled data, such as computer vision, bioinformatics, web mining, and natural language processing. 132 pp. Englisch. Nº de ref. del artículo: 9783843379106
Cantidad disponible: 2 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783843379106
Cantidad disponible: 10 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Semi-supervised learning (SSL) has grown into an important research area in machine learning, motivated by the fact that human labeling is expensive while unlabeled data are relatively easy to obtain. A basic assumption in traditional SSL is that unlabeled data and labeled data share the same distribution. However, this assumption may be incorrect when unlabeled data have a shifted covariance, or come from a related but different domain, or contain irrelevant data. With the divergence of the distribution of unlabeled data, very little academic literature exists on how to choose or adapt machine learning algorithms to different settings of unlabeled data. This book, therefore, introduces a new unified view on learning with different settings of unlabeled data. This book consists of two parts: the first part analyzes the fundamental assumptions of SSL and proposes a few efficient SSL algorithms; the second part discusses three learning frameworks to deal with other settings of unlabeled data. This book should be helpful to researchers or graduate students in areas with abundance of unlabeled data, such as computer vision, bioinformatics, web mining, and natural language processing. Nº de ref. del artículo: 9783843379106
Cantidad disponible: 1 disponibles
Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
Condición: New. *FREE DOMESTIC SHIPPING until Monday, Sept. 22* 132 pp., paperback, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1315143
Cantidad disponible: 1 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783843379106
Cantidad disponible: 2 disponibles