We present a Finite-Volume scheme for solving the equations of radiation magnetohydrodynamics. This system is for example used to model the plasma in the solar convection zone and in the solar photosphere. The starting point is a basic scheme for conservation laws. We first study the convergence of the scheme applied to a model problem for the full system of radiation magnetohydrodynamics. We then present modifications of the base scheme which make it possible to approximate the system with an arbitrary equation of state, reduce errors due to a violation of the divergence constraint on the magnetic field, and lead to an improved accuracy in the approximation of solution near an equilibrium state. These modifications are essential for an accurate simulation of processes in the solar atmosphere. For simulations in the solar photosphere, we additionally have to take the radiation intensity into account. A scheme for solving the radiation transport equation is thus a further focus of this study.
"Sinopsis" puede pertenecer a otra edición de este libro.
We present a Finite-Volume scheme for solving the equations of radiation magnetohydrodynamics. This system is for example used to model the plasma in the solar convection zone and in the solar photosphere. The starting point is a basic scheme for conservation laws. We first study the convergence of the scheme applied to a model problem for the full system of radiation magnetohydrodynamics. We then present modifications of the base scheme which make it possible to approximate the system with an arbitrary equation of state, reduce errors due to a violation of the divergence constraint on the magnetic field, and lead to an improved accuracy in the approximation of solution near an equilibrium state. These modifications are essential for an accurate simulation of processes in the solar atmosphere. For simulations in the solar photosphere, we additionally have to take the radiation intensity into account. A scheme for solving the radiation transport equation is thus a further focus of this study.
From 1992 to 1998 Andreas Dedner studied Mathematics at theUniversity of Freiburg. In 1997 he started to develop schemes forsolar physical applications as part of the priority researchprogram ANumE funded by the DFG. The project ended 2003 with thisdissertation, which was awarded the Ferdinant von Lindemann Price.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -We present a Finite-Volume scheme for solving the equations of radiation magnetohydrodynamics. This system is for example used to model the plasma in the solar convection zone and in the solar photosphere. The starting point is a basic scheme for conservation laws. We first study the convergence of the scheme applied to a model problem for the full system of radiation magnetohydrodynamics. We then present modifications of the base scheme which make it possible to approximate the system with an arbitrary equation of state, reduce errors due to a violation of the divergence constraint on the magnetic field, and lead to an improved accuracy in the approximation of solution near an equilibrium state. These modifications are essential for an accurate simulation of processes in the solar atmosphere. For simulations in the solar photosphere, we additionally have to take the radiation intensity into account. A scheme for solving the radiation transport equation is thus a further focus of this study. 352 pp. Englisch. Nº de ref. del artículo: 9783838109572
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. We present a Finite-Volume scheme for solving the equations of radiation magnetohydrodynamics. This system is for example used to model the plasma in the solar convection zone and in the solar photosphere. The starting point is a basic scheme for conservati. Nº de ref. del artículo: 5405341
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -We present a Finite-Volume scheme for solving the equations of radiation magnetohydrodynamics. This system is for example used to model the plasma in the solar convection zone and in the solar photosphere. The starting point is a basic scheme for conservation laws. We first study the convergence of the scheme applied to a model problem for the full system of radiation magnetohydrodynamics. We then present modifications of the base scheme which make it possible to approximate the system with an arbitrary equation of state, reduce errors due to a violation of the divergence constraint on the magnetic field, and lead to an improved accuracy in the approximation of solution near an equilibrium state. These modifications are essential for an accurate simulation of processes in the solar atmosphere. For simulations in the solar photosphere, we additionally have to take the radiation intensity into account. A scheme for solving the radiation transport equation is thus a further focus of this study.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 352 pp. Englisch. Nº de ref. del artículo: 9783838109572
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - We present a Finite-Volume scheme for solving the equations of radiation magnetohydrodynamics. This system is for example used to model the plasma in the solar convection zone and in the solar photosphere. The starting point is a basic scheme for conservation laws. We first study the convergence of the scheme applied to a model problem for the full system of radiation magnetohydrodynamics. We then present modifications of the base scheme which make it possible to approximate the system with an arbitrary equation of state, reduce errors due to a violation of the divergence constraint on the magnetic field, and lead to an improved accuracy in the approximation of solution near an equilibrium state. These modifications are essential for an accurate simulation of processes in the solar atmosphere. For simulations in the solar photosphere, we additionally have to take the radiation intensity into account. A scheme for solving the radiation transport equation is thus a further focus of this study. Nº de ref. del artículo: 9783838109572
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 352 pages. 8.66x5.91x0.80 inches. In Stock. Nº de ref. del artículo: 3838109570
Cantidad disponible: 1 disponibles