The aim of the present book is a uni?ed representation of some recent results in geometric function theory together with a consideration of their historical sources. These results are concerned with functions f, holomorphic or meromorphic in a domain ? in the extended complex planeC. The only additional condition we impose on these functions is the condition that the range f(?) is contained in a given domain ??C.Thisfactwillbedenotedby f? A(?,?). We shall describe (n) how one may get estimates for the derivatives|f (z )|,n?N,f ? A(?,?), 0 dependent on the position of z in ? and f(z)in?. 0 0 1.1 Historical remarks The beginning of this program may be found in the famous article [125] of G. Pick. There, he discusses estimates for the MacLaurin coe?cients of functions with positive real part in the unit disc found by C. Carath´ eodory in [52]. Pick tells his readers that he wants to generalize Carath´ eodory’s estimates such that the special role of the expansion point at the origin is no longer important. For the convenience of our readers we quote this sentence in the original language: Durch lineare Transformation von z oder, wie man sagen darf, durch kreis- ometrische Verallgemeinerung, kann man die Sonderstellung des Wertes z=0 wegscha?en, so daß sich Relationen fur ¨ die Di?erentialquotienten von w an - liebiger Stelle ergeben. The ?rst great success of this program was G. Pick’s theorem, as it is called by Carath´ eodory himself, compare [54], vol II, §286-289.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent results in geometric function theory presented here include the attractive steps on coefficient problems from Bieberbach to de Branges, applications of some hyperbolic characteristics of domains via Beardon-Pommerenke's theorem, a new interpretation of coefficient estimates as certain properties of the Poincaré metric, and a successful combination of the classical ideas of Littlewood, Löwner and Teichmüller with modern approaches. The material is complemented with historical remarks on the Schwarz Lemma and a chapter introducing some challenging open problems.
The book will be of interest for researchers and postgraduate students in function theory and hyperbolic geometry.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Apr0316110059395
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783764399993_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783764399993
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recentresultsin geometric function theory presented here include the attractive steps on coefficient problems from Bieberbach to de Branges, applications of some hyperbolic characteristics of domains via Beardon-Pommerenke's theorem, a new interpretation of coefficient estimates as certain properties of the Poincaré metric, and a successful combination of the classical ideas of Littlewood, Löwner and Teichmüller with modern approaches.The material is complemented with historical remarks on the Schwarz Lemma and a chapterintroducing some challengingopen problems.The book will be of interest for researchers and postgraduate students in function theory and hyperbolic geometry. 168 pp. Englisch. Nº de ref. del artículo: 9783764399993
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 168. Nº de ref. del artículo: 26448274
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 168 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 7432397
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 168. Nº de ref. del artículo: 18448280
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Contains historical remarks on the Schwarz Lemma as well as new theorems on Schwarz-Pick inequalities from the last 25 yearsIn addition to the several analytic methods, readers will find many interesting applications of geometric properties of dom. Nº de ref. del artículo: 5280058
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -The aim of the present book is a uni ed representation of some recent results in geometric function theory together with a consideration of their historical sources. These results are concerned with functions f, holomorphic or meromorphic in a domain in the extended complex planeC. The only additional condition we impose on these functions is the condition that the range f( ) is contained in a given domain C.Thisfactwillbedenotedby f A( , ). We shall describe (n) how one may get estimates for the derivatives|f (z )|,n N,f A( , ), 0 dependent on the position of z in and f(z)in . 0 0 1.1 Historical remarks The beginning of this program may be found in the famous article [125] of G. Pick. There, he discusses estimates for the MacLaurin coe cients of functions with positive real part in the unit disc found by C. Carath¿ eodory in [52]. Pick tells his readers that he wants to generalize Carath¿ eodory¿s estimates such that the special role of the expansion point at the origin is no longer important. For the convenience of our readers we quote this sentence in the original language: Durch lineare Transformation von z oder, wie man sagen darf, durch kreis- ometrische Verallgemeinerung, kann man die Sonderstellung des Wertes z=0 wegscha en, so daß sich Relationen fur ¿ die Di erentialquotienten von w an - liebiger Stelle ergeben. The rst great success of this program was G. Pick¿s theorem, as it is called by Carath¿ eodory himself, compare [54], vol II, 286¿289.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 168 pp. Englisch. Nº de ref. del artículo: 9783764399993
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recentresultsin geometric function theory presented here include the attractive steps on coefficient problems from Bieberbach to de Branges, applications of some hyperbolic characteristics of domains via Beardon-Pommerenke's theorem, a new interpretation of coefficient estimates as certain properties of the Poincaré metric, and a successful combination of the classical ideas of Littlewood, Löwner and Teichmüller with modern approaches.The material is complemented with historical remarks on the Schwarz Lemma and a chapterintroducing some challengingopen problems.The book will be of interest for researchers and postgraduate students in function theory and hyperbolic geometry. Nº de ref. del artículo: 9783764399993
Cantidad disponible: 1 disponibles