This text presents a theory of time-frequency representations over finite and finitely generated abelian groups which can be used to design algorithms for multidimensional applications in imaging, electromagnetics and communication theory. Emphasis is placed on Weyl-Heisenberg systems and expansions. Algorithms are developed within this abstract setting without reference to co-ordinates or dimension. By not concerning itself with co-ordinates and dimensions, algorithmic structures can be derived which should be of importance to multidimensional applications in mathematics and electrical engineering.
"Sinopsis" puede pertenecer a otra edición de este libro.
This text presents a theory of time-frequency representations over finite and finitely generated abelian groups which can be used to design algorithms for multidimensional applications in imaging, electromagnetics and communication theory. Emphasis is placed on Weyl-Heisenberg systems and expansions. Algorithms are developed within this abstract setting without reference to co-ordinates or dimension. By not concerning itself with co-ordinates and dimensions, algorithmic structures can be derived which should be of importance to multidimensional applications in mathematics and electrical engineering.
"Sobre este título" puede pertenecer a otra edición de este libro.
(Ningún ejemplar disponible)
Buscar: Crear una petición¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.
Crear una petición