As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) " . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field". This message can be found in the 12-th problem "Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality" standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.
"Sinopsis" puede pertenecer a otra edición de este libro.
As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) " . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field". This message can be found in the 12-th problem "Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality" standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.
The famous twelfth Hilbert problem calls for holomorphic functions in several variables with properties analogous to the exponential function and the elliptic modular function with a view to the explicit construction of (Hilbert) class fields by means of special values. The lecture notes present those functions living on the two-dimensional complex unit ball. In the course of their construction, the reader is introduced to work with complex multiplication, moduli fields, moduli space of curves, surface uniformizations, Gauss-Manin connection, Jacobian varieties, Torelli's theorem, Picard modular forms, Theta functions, class fields and transcen- dental values in an effective manner.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 11,99 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
Softcover. VI-160 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16794 9783764328351 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2480145
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bernhardt, Kassel, Alemania
kartoniert. Condición: Sehr gut. Zust: Gutes Exemplar. 160 Seiten, mit Abbildungen, Englisch 322g. Nº de ref. del artículo: 494382
Cantidad disponible: 1 disponibles
Librería: Antiquariat Smock, Freiburg, Alemania
Condición: Gut. Formateinband: Broschierte Ausgabe VI, 160 S. (24 cm) 1. Aufl.; Gut und sauber erhalten. Sprache: Englisch Gewicht in Gramm: 450 [Stichwörter: David Hilbert, Algebraic Geometry, ; Global analysis; Number theory]. Nº de ref. del artículo: 60008
Cantidad disponible: 1 disponibles
Librería: Second Story Books, ABAA, Rockville, MD, Estados Unidos de America
Softcover. Octavo; G-; Ex-library; Paperback; Spine, green with black print; Cover has light edgewear, call number label on front, remains of label on spine, else light shelfwear; Text block has library stamp on top edge, front flyleaf has library labels, penciled call number on copyright page, endpapers gutters taped, else clean and tight; vi, 160 pages. 1361713. FP New Rockville Stock. Nº de ref. del artículo: 1361713
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 172 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 408379/202
Cantidad disponible: 2 disponibles
Librería: Fireside Bookshop, Stroud, GLOS, Reino Unido
Paperback. Condición: Very Good. Type: Book N.B. Small gold label to ffep. Corners a little rubbed. Nº de ref. del artículo: 051363
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) ' . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field'. This message can be found in the 12-th problem 'Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality' standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21. Nº de ref. del artículo: 9783764328351
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783764328351_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but . Nº de ref. del artículo: 5279004
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 172. Nº de ref. del artículo: 2648022813
Cantidad disponible: 4 disponibles