These notes are based on lectures given in the semmar on "Coding Theory and Algebraic Geometry" held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course.
"Sinopsis" puede pertenecer a otra edición de este libro.
These notes are based on lectures given in the semmar on "Coding Theory and Algebraic Geometry" held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,00 gastos de envío desde Francia a España
Destinos, gastos y plazos de envíoEUR 5,19 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ammareal, Morangis, Francia
Softcover. Condición: Bon. Ancien livre de bibliothèque. Traces d'usure sur la couverture. Petite(s) trace(s) de pliure sur la couverture. Salissures sur la tranche. Edition 1988. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Signs of wear on the cover. Slightly creased cover. Stains on the edge. Edition 1988. Ammareal gives back up to 15% of this item's net price to charity organizations. Nº de ref. del artículo: E-927-354
Cantidad disponible: 1 disponibles
Librería: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Alemania
Broschiert. Condición: Gut. 83 Seiten Das Buch befindet sich in einem ordentlich erhaltenen Zustand. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 160. Nº de ref. del artículo: 1705000
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 14 LIN 9783764322304 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2503338
Cantidad disponible: 1 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Poor. Volume 12. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In poor condition, suitable as a reading copy. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,250grams, ISBN:3764322306. Nº de ref. del artículo: 9786236
Cantidad disponible: 1 disponibles
Librería: Fireside Bookshop, Stroud, GLOS, Reino Unido
Paperback. Condición: Very Good. Type: Book N.B. Small plain label to inside front cover. Light crease to top corners of covers. Nº de ref. del artículo: 054643
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783764322304_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. Neuware -These notes are based on lectures given in the semmar on 'Coding Theory and Algebraic Geometry' held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course. 88 pp. Englisch. Nº de ref. del artículo: 9783764322304
Cantidad disponible: 1 disponibles
Librería: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. Neuware -These notes are based on lectures given in the semmar on 'Coding Theory and Algebraic Geometry' held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course. 88 pp. Englisch. Nº de ref. del artículo: 9783764322304
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - These notes are based on lectures given in the semmar on 'Coding Theory and Algebraic Geometry' held at Schloss Mickeln, Diisseldorf, November 16-21, 1987. In 1982 Tsfasman, Vladut and Zink, using algebraic geometry and ideas of Goppa, constructed a seqeunce of codes that exceed the Gilbert-Varshamov bound. The result was considered sensational. Furthermore, it was surprising to see these unrelated areas of mathematics collaborating. The aim of this course is to give an introduction to coding theory and to sketch the ideas of algebraic geometry that led to the new result. Finally, a number of applications of these methods of algebraic geometry to coding theory are given. Since this is a new area, there are presently no references where one can find a more extensive treatment of all the material. However, both for algebraic geometry and for coding theory excellent textbooks are available. The combination ofthe two subjects can only be found in a number ofsurvey papers. A book by C. Moreno with a complete treatment of this area is in preparation. We hope that these notes will stimulate further research and collaboration of algebraic geometers and coding theorists. G. van der Geer, J.H. van Lint Introduction to CodingTheory and Algebraic Geometry PartI -- CodingTheory Jacobus H. vanLint 11 1. Finite fields In this chapter we collect (without proof) the facts from the theory of finite fields that we shall need in this course. Nº de ref. del artículo: 9783764322304
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. I: Coding Theory.- 1. Finite fields.- 2. Error-correcting codes.- 3. Linear codes.- 4. Cyclic codes.- 5. Classical Goppa codes.- 6. Bounds on codes.- 7. Self-dual codes.- 8. Codes from curves.- References.- II: Algebraic Geometry.- I. Elementary concepts fr. Nº de ref. del artículo: 5278873
Cantidad disponible: Más de 20 disponibles