The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r *...* rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . * [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r* J J J J J where Aj is a square matrix of size nj x n* say. B and C are j j j matrices of sizes n. x m and m x n . * respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity.
"Sinopsis" puede pertenecer a otra edición de este libro.
The main part of this paper concerns Toeplitz operators of which the symbol W is an m x m matrix function defined on a disconnected curve r. The curve r is assumed to be the union of s + 1 nonintersecting simple smooth closed contours rOo r ·. . . · rs which form the positively l oriented boundary of a finitely connected bounded domain in t. Our main requirement on the symbol W is that on each contour rj the function W is the restriction of a rational matrix function Wj which does not have poles and zeros on rj and at infinity. Using the realization theorem from system theory (see. e. g . · [1]. Chapter 2) the rational matrix function Wj (which differs from contour to contour) may be written in the form 1 (0. 1) W . (A) = I + C. (A - A. f B. A E r· J J J J J where Aj is a square matrix of size nj x n· say. B and C are j j j matrices of sizes n. x m and m x n . · respectively. and the matrices A. J x J J and Aj = Aj - BjC have no eigenvalues on r . (In (0. 1) the functions j j Wj are normalized to I at infinity.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 18,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02651 3764318260 Sprache: Englisch Gewicht in Gramm: 1050. Nº de ref. del artículo: 2488525
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Gut. Zustand: Gut | Seiten: 409 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 202056/3
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 409 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 202056/2
Cantidad disponible: 1 disponibles