Any book on the solution of nonsingular systems of equations is bound to start with Ax= J, but here, A is assumed to be symmetric. These systems arise frequently in scientific computing, for example, from the discretization by finite differences or by finite elements of partial differential equations. Usually, the resulting coefficient matrix A is large, but sparse. In many cases, the need to store the matrix factors rules out the application of direct solvers, such as Gaussian elimination in which case the only alternative is to use iterative methods. A natural way to exploit the sparsity structure of A is to design iterative schemes that involve the coefficient matrix only in the form of matrix-vector products. To achieve this goal, most iterative methods generate iterates Xn by the simple rule Xn = Xo + Qn-l(A)ro, where ro = f-Axo denotes the initial residual and Qn-l is some polynomial of degree n - 1. The idea behind such polynomial based iteration methods is to choose Qn-l such that the scheme converges as fast as possible.
"Sinopsis" puede pertenecer a otra edición de este libro.
Contents: Introduction - Orthogonal Polynomials - Chebyshev and Optimal Polynomials - Orthogonal Polynomials and Krylow Subspaces - Estimating the Spectrum and the Distribution function - Parameter Free Methods - Parameter Dependent Methods - The Stokes Problem - Approximating the A-Norm - Bibliography - Notation - Index
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,24 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 11,99 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Contents: Introduction - Orthogonal Polynomials - Chebyshev and Optimal Polynomials - Orthogonal Polynomials and Krylow Subspaces - Estimating the Spectrum and the Distribution function - Parameter Free Methods - Parameter Dependent Methods - The Stokes Problem - Approximating the A-Norm - Bibliography - Notation - Index. Nº de ref. del artículo: 9783663111092
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783663111092_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783663111092
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1 Introduction.- 2 Orthogonal Polynomials.- 3 Chebyshev and Optimal Polynomials.- 4 Orthogonal Polynomials and Krylov Subspaces.- 5 Estimating the Spectrum and the Distribution function.- 6 Parameter Free Methods.- 7 Parameter Dependent Methods.- 8 The Stok. Nº de ref. del artículo: 5231046
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783663111092
Cantidad disponible: 10 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 284 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 135066482
Cantidad disponible: 4 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 284 Index. Nº de ref. del artículo: 26142298285
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Any book on the solution of nonsingular systems of equations is bound to start with Ax= J, but here, A is assumed to be symmetric. These systems arise frequently in scientific computing, for example, from the discretization by finite differences or by finite elements of partial differential equations. Usually, the resulting coefficient matrix A is large, but sparse. In many cases, the need to store the matrix factors rules out the application of direct solvers, such as Gaussian elimination in which case the only alternative is to use iterative methods. A natural way to exploit the sparsity structure of A is to design iterative schemes that involve the coefficient matrix only in the form of matrix-vector products. To achieve this goal, most iterative methods generate iterates Xn by the simple rule Xn = Xo + Qn-l(A)ro, where ro = f-Axo denotes the initial residual and Qn-l is some polynomial of degree n - 1. The idea behind such polynomial based iteration methods is to choose Qn-l such that the scheme converges as fast as possible.Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Straße 46, 65189 Wiesbaden 284 pp. Deutsch. Nº de ref. del artículo: 9783663111092
Cantidad disponible: 2 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 284. Nº de ref. del artículo: 18142298279
Cantidad disponible: 4 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Polynomial Based Iteration Methods for Symmetric Linear Systems | Bernd Fischer | Taschenbuch | 283 S. | Deutsch | 2013 | Vieweg & Teubner | EAN 9783663111092 | Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, 65189 Wiesbaden, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 105581406
Cantidad disponible: 5 disponibles