This Open Access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, October 23-24, 2018.
Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.
"Sinopsis" puede pertenecer a otra edición de este libro.
Prof. Dr.-Ing. Jürgen Beyerer is Professor at the Department for Interactive Real-Time Systems at the Karlsruhe Institute of Technology. In addition he manages the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB.
Dr. Christian Kühnert is a senior researcher at the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB. His research interests are in the field of machine-learning, data-fusion and data-driven condition monitoring.
Prof. Dr. Oliver Niggemann is Professor for Artificial Intelligence in Automation. His research interests are in the fields of machine learning and data analysis for Cyber-Physical Systems and in the fields of planning and diagnosis of distributed systems. He is a board member of the research institute inIT and deputy director at the Fraunhofer Application Center Industrial Automation INA located in Lemgo.
This Open Access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, October 23-24, 2018.
Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.
The Editors
Prof. Dr.-Ing. Jürgen Beyerer is Professor at the Department for Interactive Real-Time Systems at the Karlsruhe Institute of Technology. In addition he manages the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB.
Dr. Christian Kühnert is a senior researcher at the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB. His research interests are in the field of machine-learning, data-fusion and data-driven condition monitoring.
Prof. Dr. Oliver Niggemann is Professor for Artificial Intelligence in Automation. His research interests are in the fields of machine learning and data analysis for Cyber-Physical Systems and in the fields of planning and diagnosis of distributed systems. He is a board member of the research institute inIT and deputy director at the Fraunhofer Application Center Industrial Automation INA located in Lemgo.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 4,77 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9783662584842
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 34751520
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 34751520-n
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020317925
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. 2019 ed. This Open Access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS - Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, October 23-24, 2018. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments. Nº de ref. del artículo: LU-9783662584842
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783662584842_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 34751520-n
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. 1st ed. 2019 edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26376625334
Cantidad disponible: 4 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Nº de ref. del artículo: V9783662584842
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 144 pages. 9.44x6.61x0.39 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __3662584840
Cantidad disponible: 1 disponibles