In the present scenario, Hadoop is just like the kernel for big data, having distributed storage and compute capabilities to handle structured/semi-structured/unstructured data. Hadoop framework is also utilized for data warehousing and in the field of data science, which makes new informative discoveries about data. In this book two advanced algorithm named as K-Means Clustering and Frequent Item sets mining are applied on Hadoop MapReduce environment, which presents them in a problem/solution format. Predictive analysis of the output is done with the help of Tableau. Each problem is explored step by step, which automatically helps the reader in growing more comfortable with Hadoop in the world of big data. This hand book helps the reader to demonstrate how the real world data is handled using hadoop framework. It also helps readers in understanding the basic concepts of MapReduce and Hadoop Distributed File System (HDFS).
"Sinopsis" puede pertenecer a otra edición de este libro.
In the present scenario, Hadoop is just like the kernel for big data, having distributed storage and compute capabilities to handle structured/semi-structured/unstructured data. Hadoop framework is also utilized for data warehousing and in the field of data science, which makes new informative discoveries about data. In this book two advanced algorithm named as K-Means Clustering and Frequent Item sets mining are applied on Hadoop MapReduce environment, which presents them in a problem/solution format. Predictive analysis of the output is done with the help of Tableau. Each problem is explored step by step, which automatically helps the reader in growing more comfortable with Hadoop in the world of big data. This hand book helps the reader to demonstrate how the real world data is handled using hadoop framework. It also helps readers in understanding the basic concepts of MapReduce and Hadoop Distributed File System (HDFS).
The Authors of this book have been actively involved in the research field of Big Data Analytics. They have published various books and papers in international refereed journals and prestigious conferences. Presently, they are working on “Hybrid Approach of Frequent Item-sets Mining and K-Means Clustering" with integration of encryption algorithm.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the present scenario, Hadoop is just like the kernel for big data, having distributed storage and compute capabilities to handle structured/semi-structured/unstructured data. Hadoop framework is also utilized for data warehousing and in the field of data science, which makes new informative discoveries about data. In this book two advanced algorithm named as K-Means Clustering and Frequent Item sets mining are applied on Hadoop MapReduce environment, which presents them in a problem/solution format. Predictive analysis of the output is done with the help of Tableau. Each problem is explored step by step, which automatically helps the reader in growing more comfortable with Hadoop in the world of big data. This hand book helps the reader to demonstrate how the real world data is handled using hadoop framework. It also helps readers in understanding the basic concepts of MapReduce and Hadoop Distributed File System (HDFS). 84 pp. Englisch. Nº de ref. del artículo: 9783659906244
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In the present scenario, Hadoop is just like the kernel for big data, having distributed storage and compute capabilities to handle structured/semi-structured/unstructured data. Hadoop framework is also utilized for data warehousing and in the field of data science, which makes new informative discoveries about data. In this book two advanced algorithm named as K-Means Clustering and Frequent Item sets mining are applied on Hadoop MapReduce environment, which presents them in a problem/solution format. Predictive analysis of the output is done with the help of Tableau. Each problem is explored step by step, which automatically helps the reader in growing more comfortable with Hadoop in the world of big data. This hand book helps the reader to demonstrate how the real world data is handled using hadoop framework. It also helps readers in understanding the basic concepts of MapReduce and Hadoop Distributed File System (HDFS). Nº de ref. del artículo: 9783659906244
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Agarwal RuchiThe Authors of this book have been actively involved in the research field of Big Data Analytics. They have published various books and papers in international refereed journals and prestigious conferences. Presently, th. Nº de ref. del artículo: 159147409
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 84 pages. 8.66x5.91x0.19 inches. In Stock. Nº de ref. del artículo: 3659906247
Cantidad disponible: 1 disponibles