The objective of this work is to design and implement a self-adaptive parallel GPU optimized Monte Carlo algorithm for the simulation of adsorption in porous materials. We focus on Nvidia's GPUs and CUDA's Fermi architecture specifically. The resulting package supports the different ensemble methods for the Monte Carlo simulation, which will allow for the simulation of multi-component adsorption in porous solids. Such an algorithm will have broad applications to the development of novel porous materials for the sequestration of CO2 and the filtration of toxic industrial chemicals. The primary objective of this work is the release of a massively parallel open source Monte Carlo simulation engine implemented using GPUs, called GOMC. The code will utilize the canonical ensemble, and the Gibbs ensemble method, which will allow for the simulation of multiple phenomena, including liquid-vapor phase coexistence, and single and multi-component adsorption in porous materials. In addition, the grand canonical ensemble and the configurational-bias algorithms have been implemented so that polymeric materials and small proteins may be simulated.
"Sinopsis" puede pertenecer a otra edición de este libro.
The objective of this work is to design and implement a self-adaptive parallel GPU optimized Monte Carlo algorithm for the simulation of adsorption in porous materials. We focus on Nvidia's GPUs and CUDA's Fermi architecture specifically. The resulting package supports the different ensemble methods for the Monte Carlo simulation, which will allow for the simulation of multi-component adsorption in porous solids. Such an algorithm will have broad applications to the development of novel porous materials for the sequestration of CO2 and the filtration of toxic industrial chemicals. The primary objective of this work is the release of a massively parallel open source Monte Carlo simulation engine implemented using GPUs, called GOMC. The code will utilize the canonical ensemble, and the Gibbs ensemble method, which will allow for the simulation of multiple phenomena, including liquid-vapor phase coexistence, and single and multi-component adsorption in porous materials. In addition, the grand canonical ensemble and the configurational-bias algorithms have been implemented so that polymeric materials and small proteins may be simulated.
Eyad Hailat earned his Ph.D. in Computer Science from Wayne State University in 2013. His research interest includes High Performance Computing for massively parallel devices, such as the GPU. One application for his research is numerical simulations to accurately predict properties of materials and their guest-adsorption characteristics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The objective of this work is to design and implement a self-adaptive parallel GPU optimized Monte Carlo algorithm for the simulation of adsorption in porous materials. We focus on Nvidia's GPUs and CUDA's Fermi architecture specifically. The resulting package supports the different ensemble methods for the Monte Carlo simulation, which will allow for the simulation of multi-component adsorption in porous solids. Such an algorithm will have broad applications to the development of novel porous materials for the sequestration of CO2 and the filtration of toxic industrial chemicals. The primary objective of this work is the release of a massively parallel open source Monte Carlo simulation engine implemented using GPUs, called GOMC. The code will utilize the canonical ensemble, and the Gibbs ensemble method, which will allow for the simulation of multiple phenomena, including liquid-vapor phase coexistence, and single and multi-component adsorption in porous materials. In addition, the grand canonical ensemble and the configurational-bias algorithms have been implemented so that polymeric materials and small proteins may be simulated. 132 pp. Englisch. Nº de ref. del artículo: 9783659554636
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The objective of this work is to design and implement a self-adaptive parallel GPU optimized Monte Carlo algorithm for the simulation of adsorption in porous materials. We focus on Nvidia's GPUs and CUDA's Fermi architecture specifically. The resulting package supports the different ensemble methods for the Monte Carlo simulation, which will allow for the simulation of multi-component adsorption in porous solids. Such an algorithm will have broad applications to the development of novel porous materials for the sequestration of CO2 and the filtration of toxic industrial chemicals. The primary objective of this work is the release of a massively parallel open source Monte Carlo simulation engine implemented using GPUs, called GOMC. The code will utilize the canonical ensemble, and the Gibbs ensemble method, which will allow for the simulation of multiple phenomena, including liquid-vapor phase coexistence, and single and multi-component adsorption in porous materials. In addition, the grand canonical ensemble and the configurational-bias algorithms have been implemented so that polymeric materials and small proteins may be simulated. Nº de ref. del artículo: 9783659554636
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Hailat EyadEyad Hailat earned his Ph.D. in Computer Science from Wayne State University in 2013. His research interest includes High Performance Computing for massively parallel devices, such as the GPU. One application for his resea. Nº de ref. del artículo: 5164492
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -The objective of this work is to design and implement a self-adaptive parallel GPU optimized Monte Carlo algorithm for the simulation of adsorption in porous materials. We focus on Nvidia's GPUs and CUDA's Fermi architecture specifically. The resulting package supports the different ensemble methods for the Monte Carlo simulation, which will allow for the simulation of multi-component adsorption in porous solids. Such an algorithm will have broad applications to the development of novel porous materials for the sequestration of CO2 and the filtration of toxic industrial chemicals. The primary objective of this work is the release of a massively parallel open source Monte Carlo simulation engine implemented using GPUs, called GOMC. The code will utilize the canonical ensemble, and the Gibbs ensemble method, which will allow for the simulation of multiple phenomena, including liquid-vapor phase coexistence, and single and multi-component adsorption in porous materials. In addition, the grand canonical ensemble and the configurational-bias algorithms have been implemented so that polymeric materials and small proteins may be simulated.Books on Demand GmbH, Überseering 33, 22297 Hamburg 132 pp. Englisch. Nº de ref. del artículo: 9783659554636
Cantidad disponible: 2 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: New. New. book. Nº de ref. del artículo: ERICA82936595546346
Cantidad disponible: 1 disponibles