Artículos relacionados a Analysis & forecasting of irrigation decision behavior:...

Analysis & forecasting of irrigation decision behavior: Practical machine learning algorithms and guidelines for their implementation - Tapa blanda

 
9783659500183: Analysis & forecasting of irrigation decision behavior: Practical machine learning algorithms and guidelines for their implementation

Sinopsis

Farmers play an important role in food production. Farmers must make many decisions during the course of a growing season about the allocation of inputs to production. For farmers in arid regions, one of these decisions is whether to irrigate. It is hence vital to investigate the reasons that drive a farmer to make irrigation decisions and use those reasons/factors to forecast future irrigation decisions. This study can help water managers and canal operators to estimate short-term irrigation demands, thereby gaining information that might be useful in management of irrigation supply systems. We introduce three approaches to study farmer irrigation behavior: Bayesian belief networks (BBNs), decision trees, and hidden Markov models (HMMs). All three models are in the class of evolutionary algorithms, which are often used to analyze problems in dynamic and uncertain environments. These algorithms learn the connections between observed input and output data and can make predictions about future events.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Farmers play an important role in food production. Farmers must make many decisions during the course of a growing season about the allocation of inputs to production. For farmers in arid regions, one of these decisions is whether to irrigate. It is hence vital to investigate the reasons that drive a farmer to make irrigation decisions and use those reasons/factors to forecast future irrigation decisions. This study can help water managers and canal operators to estimate short-term irrigation demands, thereby gaining information that might be useful in management of irrigation supply systems. We introduce three approaches to study farmer irrigation behavior: Bayesian belief networks (BBNs), decision trees, and hidden Markov models (HMMs). All three models are in the class of evolutionary algorithms, which are often used to analyze problems in dynamic and uncertain environments. These algorithms learn the connections between observed input and output data and can make predictions about future events.

Biografía del autor

I have expertise in machine learning techniques and their application in the field of water resources engineering and management. I completed my Ph.D. in Civil and Environmental Engineering with a major in Water Resources Engg. and Hydrology. Before that my Masters degree was in Water Resources Engg. and Bachelor's degree was in Agriculture Engg.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Analysis & forecasting of irrigation decision behavior:...

Imagen del vendedor

Sanyogita Andriyas
Publicado por LAP LAMBERT Academic Publishing, 2013
ISBN 10: 3659500186 ISBN 13: 9783659500183
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Andriyas SanyogitaI have expertise in machine learning techniques and their application in the field of water resources engineering and management. I completed my Ph.D. in Civil and Environmental Engineering with a major in Water Res. Nº de ref. del artículo: 5160344

Contactar al vendedor

Comprar nuevo

EUR 45,45
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Sanyogita Andriyas
ISBN 10: 3659500186 ISBN 13: 9783659500183
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Farmers play an important role in food production. Farmers must make many decisions during the course of a growing season about the allocation of inputs to production. For farmers in arid regions, one of these decisions is whether to irrigate. It is hence vital to investigate the reasons that drive a farmer to make irrigation decisions and use those reasons/factors to forecast future irrigation decisions. This study can help water managers and canal operators to estimate short-term irrigation demands, thereby gaining information that might be useful in management of irrigation supply systems. We introduce three approaches to study farmer irrigation behavior: Bayesian belief networks (BBNs), decision trees, and hidden Markov models (HMMs). All three models are in the class of evolutionary algorithms, which are often used to analyze problems in dynamic and uncertain environments. These algorithms learn the connections between observed input and output data and can make predictions about future events. 124 pp. Englisch. Nº de ref. del artículo: 9783659500183

Contactar al vendedor

Comprar nuevo

EUR 54,90
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Sanyogita Andriyas
Publicado por LAP LAMBERT Academic Publishing, 2013
ISBN 10: 3659500186 ISBN 13: 9783659500183
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Farmers play an important role in food production. Farmers must make many decisions during the course of a growing season about the allocation of inputs to production. For farmers in arid regions, one of these decisions is whether to irrigate. It is hence vital to investigate the reasons that drive a farmer to make irrigation decisions and use those reasons/factors to forecast future irrigation decisions. This study can help water managers and canal operators to estimate short-term irrigation demands, thereby gaining information that might be useful in management of irrigation supply systems. We introduce three approaches to study farmer irrigation behavior: Bayesian belief networks (BBNs), decision trees, and hidden Markov models (HMMs). All three models are in the class of evolutionary algorithms, which are often used to analyze problems in dynamic and uncertain environments. These algorithms learn the connections between observed input and output data and can make predictions about future events. Nº de ref. del artículo: 9783659500183

Contactar al vendedor

Comprar nuevo

EUR 54,90
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Sanyogita Andriyas
ISBN 10: 3659500186 ISBN 13: 9783659500183
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Farmers play an important role in food production. Farmers must make many decisions during the course of a growing season about the allocation of inputs to production. For farmers in arid regions, one of these decisions is whether to irrigate. It is hence vital to investigate the reasons that drive a farmer to make irrigation decisions and use those reasons/factors to forecast future irrigation decisions. This study can help water managers and canal operators to estimate short-term irrigation demands, thereby gaining information that might be useful in management of irrigation supply systems. We introduce three approaches to study farmer irrigation behavior: Bayesian belief networks (BBNs), decision trees, and hidden Markov models (HMMs). All three models are in the class of evolutionary algorithms, which are often used to analyze problems in dynamic and uncertain environments. These algorithms learn the connections between observed input and output data and can make predictions about future events.Books on Demand GmbH, Überseering 33, 22297 Hamburg 124 pp. Englisch. Nº de ref. del artículo: 9783659500183

Contactar al vendedor

Comprar nuevo

EUR 54,90
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito