Reinforcement Learning: State-of-the-Art - Tapa blanda

 
9783642276460: Reinforcement Learning: State-of-the-Art

Esta edición ISBN ya no está disponible.

Sinopsis

Continous State and Action Spaces.- Relational and First-Order Knowledge Representation.- Hierarchical Approaches.- Predictive Approaches.- Multi-Agent Reinforcement Learning.- Partially Observable Markov Decision Processes (POMDPs).- Decentralized POMDPs (DEC-POMDPs).- Features and Function Approximation.- RL as Supervised Learning (or batch learning).- Bounds and complexity.- RL for Games.- RL in Robotics.- Policy Gradient Techniques.- Least Squares Value Iteration.- Models and Model Induction.- Model-based RL.- Transfer Learning in RL.- Using of and extracting Knowledge in RL.- Biological or Psychological Background.- Evolutionary Approaches.- Closing chapter, prospects, future issues.

"Sinopsis" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9783642276446: Reinforcement Learning: State-of-the-Art: 12 (Adaptation, Learning, and Optimization)

Edición Destacada

ISBN 10:  364227644X ISBN 13:  9783642276446
Editorial: Springer, 2012
Tapa dura