Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t? 0; F ,t? 0, P) - t t note a standard Brownian motion with B = 0, (F ,t? 0) being its natural ?ltra- 0 t t tion. Let E := exp B? ,t? 0 denote the exponential martingale associated t t 2 to (B ,t? 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K? 0: + ? (t) :=E (K?E ) (0.1) K t and + C (t) :=E (E?K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 ? 2 ? N (x) := e dy. (0.3) 2? ?? The celebrated Black-Scholes formula gives an explicit expression of? (t) and K C (t) in terms ofN : K ? ? log(K) t log(K) t ? (t)= KN ? + ?N ? ? (0.4) K t 2 t 2 and ? ?
"Sinopsis" puede pertenecer a otra edición de este libro.
The Black-Scholes formula plays a central role in Mathematical Finance; it gives the right price at which buyer and seller can agree with, in the geometric Brownian framework, when strike K and maturity T are given. This yields an explicit well-known formula, obtained by Black and Scholes in 1973.
The present volume gives another representation of this formula in terms of Brownian last passages times, which, to our knowledge, has never been made in this sense.
The volume is devoted to various extensions and discussions of features and quantities stemming from the last passages times representation in the Brownian case such as: past-future martingales, last passage times up to a finite horizon, pseudo-inverses of processes... They are developed in eight chapters, with complements, appendices and exercises.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,45 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 6,81 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR014317756
Cantidad disponible: 1 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783642103940
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 7862522-n
Cantidad disponible: Más de 20 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020218416
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783642103940
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 294. Nº de ref. del artículo: 261375801
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783642103940_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783642103940
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Discovered in the seventies, Black-Scholes formula continues to play a central role in Mathematical Finance. We recall this formula. Let (B ,t 0; F ,t 0, P) - t t note a standard Brownian motion with B = 0, (F ,t 0) being its natural ltra- 0 t t tion. Let E := exp B ,t 0 denote the exponential martingale associated t t 2 to (B ,t 0). This martingale, also called geometric Brownian motion, is a model t to describe the evolution of prices of a risky asset. Let, for every K 0: + (t) :=E (K E ) (0.1) K t and + C (t) :=E (E K) (0.2) K t denote respectively the price of a European put, resp. of a European call, associated with this martingale. Let N be the cumulative distribution function of a reduced Gaussian variable: x 2 y 1 2 N (x) := e dy. (0.3) 2 The celebrated Black-Scholes formula gives an explicit expression of (t) and K C (t) in terms ofN : K log(K) t log(K) t (t)= KN + N (0.4) K t 2 t 2 and 292 pp. Englisch. Nº de ref. del artículo: 9783642103940
Cantidad disponible: 2 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 7862522-n
Cantidad disponible: Más de 20 disponibles