In this work we studied Reconfigurable Flight Control Systems to achieve acceptable performance of a fighter aircraft, even in the event of wing damage to the aircraft at low speeds and high angle of attack, which is typical of many combat maneuvers. Equations of motion for the damaged aircraft were derived, which helped in building simulators. A new methodology for numerical prediction of aerodynamics of damaged aircraft was proposed and implemented. A baseline control system for undamaged aircraft was developed, and finally a reconfigurable flight control scheme was implemented to keep the aircraft flyable even after the damage. In this study we proposed a hybrid reconfigurable flight control system (RFCS) which was a fusion of active and passive techniques. We derived equations of motion for the damaged aircraft. The new approach to derivation lends insight into possible simplification in building simulators for damaged aircraft. A new methodology for better prediction of damaged aircraft aerodynamics. Fixed gain controller was found to be inadequate for controlling the damaged aircraft. For alleviating this a novel reconfigurable scheme based on MPC is evaluated.
"Sinopsis" puede pertenecer a otra edición de este libro.
In this work we studied Reconfigurable Flight Control Systems to achieve acceptable performance of a fighter aircraft, even in the event of wing damage to the aircraft at low speeds and high angle of attack, which is typical of many combat maneuvers. Equations of motion for the damaged aircraft were derived, which helped in building simulators. A new methodology for numerical prediction of aerodynamics of damaged aircraft was proposed and implemented. A baseline control system for undamaged aircraft was developed, and finally a reconfigurable flight control scheme was implemented to keep the aircraft flyable even after the damage. In this study we proposed a hybrid reconfigurable flight control system (RFCS) which was a fusion of active and passive techniques. We derived equations of motion for the damaged aircraft. The new approach to derivation lends insight into possible simplification in building simulators for damaged aircraft. A new methodology for better prediction of damaged aircraft aerodynamics. Fixed gain controller was found to be inadequate for controlling the damaged aircraft. For alleviating this a novel reconfigurable scheme based on MPC is evaluated.
Bilal A. Siddiqui received Bachelors degree in Mechanical Engineering from NED Universtiy, Pakistan in 2004. He then worked for the national space agency of Pakistan, SUPARCO as an aerodynamics and flight control systems designer. He went on to earn a Masters degree in Aerospace Engineering from KFUPM, Saudi Arabia in 2010.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 9808458-n
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783639262254
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783639262254
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783639262254
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783639262254_new
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: LU-9783639262254
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783639262254
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 9808458-n
Cantidad disponible: Más de 20 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Reconfigurable Flight Control For Fighter Aircraft Using MPC | Fault Tolerant Flight Control Design for Aircraft Utilizing Robustness Characteristics of Model Predictive Control | Bilal Siddiqui | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2010 | VDM Verlag Dr. Müller | EAN 9783639262254 | Verantwortliche Person für die EU: OmniScriptum GmbH & Co. KG, Bahnhofstr. 28, 66111 Saarbrücken, info[at]akademikerverlag[dot]de | Anbieter: preigu. Nº de ref. del artículo: 101029169
Cantidad disponible: 5 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - In this work we studied Reconfigurable Flight Control Systems to achieve acceptable performance of a fighter aircraft, even in the event of wing damage to the aircraft at low speeds and high angle of attack, which is typical of many combat maneuvers. Equations of motion for the damaged aircraft were derived, which helped in building simulators. A new methodology for numerical prediction of aerodynamics of damaged aircraft was proposed and implemented. A baseline control system for undamaged aircraft was developed, and finally a reconfigurable flight control scheme was implemented to keep the aircraft flyable even after the damage. In this study we proposed a hybrid reconfigurable flight control system (RFCS) which was a fusion of active and passive techniques. We derived equations of motion for the damaged aircraft. The new approach to derivation lends insight into possible simplification in building simulators for damaged aircraft. A new methodology for better prediction of damaged aircraft aerodynamics. Fixed gain controller was found to be inadequate for controlling the damaged aircraft. For alleviating this a novel reconfigurable scheme based on MPC is evaluated. Nº de ref. del artículo: 9783639262254
Cantidad disponible: 2 disponibles