Microarray gene expression data are produced around the world in huge amounts. This data is not easy to analyse manually. Therefore, there is a need for automated techniques to do the job. Clustering is one of the automated techniques that can be handed to a computer to cluster the data to groups depending on properties that this data share. An important source of information for such automated techniques is the data about genes in large shared text databases such as Swiss-Prot. This book explores and evaluates MAXCCLUS, a bioinformatics clustering algorithm, which clusters genes from microarray experimental data. MAXCCLUS does the clustering of genes depending on the textual data that describe the genes. It attempts to create clusters of which it selects only the statistically significant ones by running a significance test. It then attempts to generalise these clusters by using a simple greedy generalisation algorithm. We explore the behaviour of MAXCCLUS by running several clustering experiments that investigate various modifications to MAXCCLUS and its data. This book should be useful to researchers and every one interested in clustering of microarray gene expression data.
"Sinopsis" puede pertenecer a otra edición de este libro.
Microarray gene expression data are produced around the world in huge amounts. This data is not easy to analyse manually. Therefore, there is a need for automated techniques to do the job. Clustering is one of the automated techniques that can be handed to a computer to cluster the data to groups depending on properties that this data share. An important source of information for such automated techniques is the data about genes in large shared text databases such as Swiss-Prot. This book explores and evaluates MAXCCLUS, a bioinformatics clustering algorithm, which clusters genes from microarray experimental data. MAXCCLUS does the clustering of genes depending on the textual data that describe the genes. It attempts to create clusters of which it selects only the statistically significant ones by running a significance test. It then attempts to generalise these clusters by using a simple greedy generalisation algorithm. We explore the behaviour of MAXCCLUS by running several clustering experiments that investigate various modifications to MAXCCLUS and its data. This book should be useful to researchers and every one interested in clustering of microarray gene expression data.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020185463
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 5699458-n
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783639033359
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9783639033359
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783639033359
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783639033359
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 5699458-n
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Microarray gene expression data are produced around the world in huge amounts. This data is not easy to analyse manually. Therefore, there is a need for automated techniques to do the job. Clustering is one of the automated techniques that can be handed to . Nº de ref. del artículo: 4951189
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - Microarray gene expression data are produced around the world in huge amounts. This data is not easy to analyse manually. Therefore, there is a need for automated techniques to do the job. Clustering is one of the automated techniques that can be handed to a computer to cluster the data to groups depending on properties that this data share. An important source of information for such automated techniques is the data about genes in large shared text databases such as Swiss-Prot. This book explores and evaluates MAXCCLUS, a bioinformatics clustering algorithm, which clusters genes from microarray experimental data. MAXCCLUS does the clustering of genes depending on the textual data that describe the genes. It attempts to create clusters of which it selects only the statistically significant ones by running a significance test. It then attempts to generalise these clusters by using a simple greedy generalisation algorithm. We explore the behaviour of MAXCCLUS by running several clustering experiments that investigate various modifications to MAXCCLUS and its data. This book should be useful to researchers and every one interested in clustering of microarray gene expression data. Nº de ref. del artículo: 9783639033359
Cantidad disponible: 2 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 5699458
Cantidad disponible: Más de 20 disponibles