The goal of this book is to provide a unified presentation of a variety of algorithms for likelihood and Bayesian inference. Two types of methods are considered: observed data and data augmentation methods. The observed data methods, which are applied directly to the likelihood or posterior inference, include maximum likelihood, Laplace expansion, Monte Carlo and importance sampling. The data augmentation methods rely on an augmentation of the data which simplifies the likelihood or posterior inference. These include EM, Louis' modification of the EM, poor man's data augmentation, SIR and the Gibbs sampler.
"Sobre este título" puede pertenecer a otra edición de este libro.
GRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
Unknown. Condición: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 0.44. Nº de ref. del artículo: G354097525XI3N00
Cantidad disponible: 1 disponibles