Errata, detected in Taylor's Logarithms. London: 4to, 1792. [sic] 14.18.3 6 Kk Co-sine of 3398 3298 - Nautical Almanac (1832) In the list of ERRATA detected in Taylor's Logarithms, for cos. 4° 18'3", read cos. 14° 18'2". - Nautical Almanac (1833) ERRATUM ofthe ERRATUM ofthe ERRATA of TAYLOR'S Logarithms. For cos. 4° 18'3", read cos. 14° 18' 3". - Nautical Almanac (1836) In the 1820s, an Englishman named Charles Babbage designed and partly built a calculating machine originally intended for use in deriving and printing logarithmic and other tables used in the shipping industry. At that time, such tables were often inaccurate, copied carelessly, and had been instrumental in causing a number of maritime disasters. Babbage's machine, called a 'Difference Engine' because it performed its cal culations using the principle of partial differences, was intended to substantially reduce the number of errors made by humans calculating the tables. Babbage had also designed (but never built) a forerunner of the modern printer, which would also reduce the number of errors admitted during the transcription of the results. Nowadays, a system implemented to perform the function of Babbage's engine would be classed as safety-critical. That is, the failure of the system to produce correct results could result in the loss of human life, mass destruction of property (in the form of ships and cargo) as well as financial losses and loss of competitive advantage for the shipping firm.
"Sinopsis" puede pertenecer a otra edición de este libro.
Errata, detected in Taylor's Logarithms. London: 4to, 1792. [sic] 14.18.3 6 Kk Co-sine of 3398 3298 - Nautical Almanac (1832) In the list of ERRATA detected in Taylor's Logarithms, for cos. 4° 18'3", read cos. 14° 18'2". - Nautical Almanac (1833) ERRATUM ofthe ERRATUM ofthe ERRATA of TAYLOR'S Logarithms. For cos. 4° 18'3", read cos. 14° 18' 3". - Nautical Almanac (1836) In the 1820s, an Englishman named Charles Babbage designed and partly built a calculating machine originally intended for use in deriving and printing logarithmic and other tables used in the shipping industry. At that time, such tables were often inaccurate, copied carelessly, and had been instrumental in causing a number of maritime disasters. Babbage's machine, called a 'Difference Engine' because it performed its cal culations using the principle of partial differences, was intended to substantially reduce the number of errors made by humans calculating the tables. Babbage had also designed (but never built) a forerunner of the modern printer, which would also reduce the number of errors admitted during the transcription of the results. Nowadays, a system implemented to perform the function of Babbage's engine would be classed as safety-critical. That is, the failure of the system to produce correct results could result in the loss of human life, mass destruction of property (in the form of ships and cargo) as well as financial losses and loss of competitive advantage for the shipping firm.
This volume provides the reader with a comprehensive introduction to system specification and design methods, with particular emphasis on structured and formal methods, method integration, concurrency and safety-critical systems. It contains both new material by Michael Hinchey and Jonathan Bowen, along with reprints of classic articles on high-integrity systems which have never before appeared together in a single volume. Among these classic articles are contributions from such leading names as Leslie Lamport, Nancy Leveson, and C.A.R. Hoare. Also included is a Foreword by David Lorge Parnas. High-Integrity System Specification and Design will provide practitioners and researchers convenient access to a range of essential essays - both classic and state-of-the-art - in a single volume. It provides them with details of specification and design approaches for this type of system, an overview of the development process, and evidence of how various classes of high- integrity systems may be approached and developed successfully.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,67 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-156902
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 724 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 7625672
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Errata, detected in Taylor's Logarithms. London: 4to, 1792. [sic] 14.18.3 6 Kk Co-sine of 3398 3298 - Nautical Almanac (1832) In the list of ERRATA detected in Taylor's Logarithms, for cos. 4° 18'3', read cos. 14° 18'2'. - Nautical Almanac (1833) ERRATUM ofthe ERRATUM ofthe ERRATA of TAYLOR'S Logarithms. For cos. 4° 18'3', read cos. 14° 18' 3'. - Nautical Almanac (1836) In the 1820s, an Englishman named Charles Babbage designed and partly built a calculating machine originally intended for use in deriving and printing logarithmic and other tables used in the shipping industry. At that time, such tables were often inaccurate, copied carelessly, and had been instrumental in causing a number of maritime disasters. Babbage's machine, called a 'Difference Engine' because it performed its cal culations using the principle of partial differences, was intended to substantially reduce the number of errors made by humans calculating the tables. Babbage had also designed (but never built) a forerunner of the modern printer, which would also reduce the number of errors admitted during the transcription of the results. Nowadays, a system implemented to perform the function of Babbage's engine would be classed as safety-critical. That is, the failure of the system to produce correct results could result in the loss of human life, mass destruction of property (in the form of ships and cargo) as well as financial losses and loss of competitive advantage for the shipping firm. Nº de ref. del artículo: 9783540762263
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 724. Nº de ref. del artículo: 26254999
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Brings together classic essays on system specification and design, and new contributions, in a single volumeErrata, detected in Taylor s Logarithms. London: 4to, 1792. [sic] 14.18.3 6 Kk Co-sine of 3398 3298 - Nautical Almanac (1832) In the list of ERRA. Nº de ref. del artículo: 4900430
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540762263_new
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 724. Nº de ref. del artículo: 18255005
Cantidad disponible: 1 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-341969
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Errata, detected in Taylor's Logarithms. London: 4to, 1792. [sic] 14.18.3 6 Kk Co-sine of 3398 3298 - Nautical Almanac (1832) In the list of ERRATA detected in Taylor's Logarithms, for cos. 4° 18'3', read cos. 14° 18'2'. - Nautical Almanac (1833) ERRATUM ofthe ERRATUM ofthe ERRATA of TAYLOR'S Logarithms. For cos. 4° 18'3', read cos. 14° 18' 3'. - Nautical Almanac (1836) In the 1820s, an Englishman named Charles Babbage designed and partly built a calculating machine originally intended for use in deriving and printing logarithmic and other tables used in the shipping industry. At that time, such tables were often inaccurate, copied carelessly, and had been instrumental in causing a number of maritime disasters. Babbage's machine, called a 'Difference Engine' because it performed its cal culations using the principle of partial differences, was intended to substantially reduce the number of errors made by humans calculating the tables. Babbage had also designed (but never built) a forerunner of the modern printer, which would also reduce the number of errors admitted during the transcription of the results. Nowadays, a system implemented to perform the function of Babbage's engine would be classed as safety-critical. That is, the failure of the system to produce correct results could result in the loss of human life, mass destruction of property (in the form of ships and cargo) as well as financial losses and loss of competitive advantage for the shipping firm.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 724 pp. Englisch. Nº de ref. del artículo: 9783540762263
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Errata, detected in Taylor's Logarithms. London: 4to, 1792. [sic] 14.18.3 6 Kk Co-sine of 3398 3298 - Nautical Almanac (1832) In the list of ERRATA detected in Taylor's Logarithms, for cos. 4° 18'3', read cos. 14° 18'2'. - Nautical Almanac (1833) ERRATUM ofthe ERRATUM ofthe ERRATA of TAYLOR'S Logarithms. For cos. 4° 18'3', read cos. 14° 18' 3'. - Nautical Almanac (1836) In the 1820s, an Englishman named Charles Babbage designed and partly built a calculating machine originally intended for use in deriving and printing logarithmic and other tables used in the shipping industry. At that time, such tables were often inaccurate, copied carelessly, and had been instrumental in causing a number of maritime disasters. Babbage's machine, called a 'Difference Engine' because it performed its cal culations using the principle of partial differences, was intended to substantially reduce the number of errors made by humans calculating the tables. Babbage had also designed (but never built) a forerunner of the modern printer, which would also reduce the number of errors admitted during the transcription of the results. Nowadays, a system implemented to perform the function of Babbage's engine would be classed as safety-critical. That is, the failure of the system to produce correct results could result in the loss of human life, mass destruction of property (in the form of ships and cargo) as well as financial losses and loss of competitive advantage for the shipping firm. 724 pp. Englisch. Nº de ref. del artículo: 9783540762263
Cantidad disponible: 2 disponibles