The improved and expanded second edition contains expositions of some major results which have been obtained in the years since the 1st edition. Theaffirmative answer by Preiss of the decades old question of whether a Banachspace with an equivalent Gateaux differentiable norm is a weak Asplund space. The startlingly simple proof by Simons of Rockafellar's fundamental maximal monotonicity theorem for subdifferentials of convex functions. The exciting new version of the useful Borwein-Preiss smooth variational principle due to Godefroy, Deville and Zizler. The material is accessible to students who have had a course in Functional Analysis; indeed, the first edition has been used in numerous graduate seminars. Starting with convex functions on the line, it leads to interconnected topics in convexity, differentiability and subdifferentiability of convex functions in Banach spaces, generic continuity of monotone operators, geometry of Banach spaces and the Radon-Nikodym property, convex analysis, variational principles and perturbed optimization. While much of this is classical, streamlined proofs found more recently are given in many instances. There are numerous exercises, many of which form an integral part of the exposition.
"Sinopsis" puede pertenecer a otra edición de este libro.
In the three and a half years since the first edition to these notes was written there has been progress on a number of relevant topics. D. Preiss answered in the affirmative the decades old question of whether a Banach space with an equivalent Gateaux differentiable norm is a weak Asplund space, while R. Haydon constructed some very ingenious examples which show, among other things, that the converse to Preiss' theorem is false. S. Simons produced a startlingly simple proof of Rockafellar's maximal monotonicity theorem for subdifferentials of convex functions. G. Godefroy, R. Deville and V. Zizler proved an exciting new version ofthe Borwein-Preiss smooth variational prin ciple. Other new contributions to the area have come from J. Borwein, S. Fitzpatrick, P. Kenderov, 1. Namioka, N. Ribarska, A. and M. E. Verona and the author. Some ofthe new material and substantial portions ofthe first edition were used in a one-quarter graduate course at the University of Washington in 1991 (leading to a number of corrections and improvements) and some of the new theorems were presented in the Rainwater Seminar. An obvious improvement is due to the fact that I learned to use '!EX. The task of converting the original MacWrite text to '!EXwas performed by Ms. Mary Sheetz, to whom I am extremely grateful.
The improved and expanded second edition contains expositions of some major results which have been obtained in the years since the 1st edition. Theaffirmative answer by Preiss of the decades old question of whether a Banachspace with an equivalent Gateaux differentiable norm is a weak Asplund space. The startlingly simple proof by Simons of Rockafellar's fundamental maximal monotonicity theorem for subdifferentials of convex functions. The exciting new version of the useful Borwein-Preiss smooth variational principle due to Godefroy, Deville and Zizler. The material is accessible to students who have had a course in Functional Analysis; indeed, the first edition has been used in numerous graduate seminars. Starting with convex functions on the line, it leads to interconnected topics in convexity, differentiability and subdifferentiability of convex functions in Banach spaces, generic continuity of monotone operators, geometry of Banach spaces and the Radon-Nikodym property, convex analysis, variational principles and perturbed optimization. While much of this is classical, streamlined proofs found more recently are given in many instances. There are numerous exercises, many of which form an integral part of the exposition.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020170845
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783540567158
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783540567158
Cantidad disponible: 10 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 132 2nd Edition. Nº de ref. del artículo: 2658594610
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 132 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 50965229
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 2nd edition. 128 pages. 9.06x6.14x0.39 inches. In Stock. Nº de ref. del artículo: x-3540567151
Cantidad disponible: 2 disponibles
Librería: Antiquariat Thomas Nonnenmacher, Freiburg, Alemania
Softcover/Paperback. Condición: Gut. (Lecture Notes in Mathematics 1364.). IX, 116 Seiten. Sehr gut erhalten. 9783540567158 Sprache: Englisch Gewicht in Gramm: 1200. Nº de ref. del artículo: 104866
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 132. Nº de ref. del artículo: 1858594616
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Convex functions on real Banach spaces.- Monotone operators, subdifferentials and Asplund spaces.- Lower semicontinuous convex functions.- Smooth variational principles, Asplund spaces, weak Asplund spaces.- Asplund spaces, the RNP and perturbed optimizatio. Nº de ref. del artículo: 18965946
Cantidad disponible: Más de 20 disponibles
Librería: BennettBooksLtd, San Diego, NV, Estados Unidos de America
paperback. Condición: New. In shrink wrap. Looks like an interesting title! Nº de ref. del artículo: Q-3540567151
Cantidad disponible: 1 disponibles