These lectures deal with background and latest developments in symmetries, singularity structures (Painlevé analysis) and their relation to integrability and chaos in classical and quantum nonlinear dynamical systems. The book is useful to both newcomers
"Sinopsis" puede pertenecer a otra edición de este libro.
Proceedings of the Workshop, Bharathidasan University, Tiruchirapalli, India, November 29 - December 2, 1989
Symmetries and singularity structures play important roles in the study of nonlinear dynamical systems. It was Sophus Lie who originally stressed the importance of symmetries and invariance in the study of nonlinear differential equations. How ever, the full potentialities of symmetries had been realized only after the advent of solitons in 1965. It is now a well-accepted fact that associated with the infinite number of integrals of motion of a given soliton system, an infinite number of gep. eralized Lie BAcklund symmetries exist. The associated bi-Hamiltonian struc ture, Kac-Moody, Vrrasoro algebras, and so on, have been increasingly attracting the attention of scientists working in this area. Similarly, in recent times the role of symmetries in analyzing both the classical and quantum integrable and nonintegrable finite dimensional systems has been remarkable. On the other hand, the works of Fuchs, Kovalevskaya, Painleve and coworkers on the singularity structures associated with the solutions of nonlinear differen tial equations have helped to classify first and second order nonlinear ordinary differential equations. The recent work of Ablowitz, Ramani and Segur, con jecturing a connection between soliton systems and Painleve equations that are free from movable critical points, has motivated considerably the search for the connection between integrable dynamical systems with finite degrees of freedom and the Painleve property. Weiss, Tabor and Carnevale have extended these ideas to partial differential equations.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04437 3540530924 Sprache: Englisch Gewicht in Gramm: 550 Softcover reprint of the original 1st ed. 1990. Nº de ref. del artículo: 2490672
Cantidad disponible: 1 disponibles
Librería: Hay-on-Wye Booksellers, Hay-on-Wye, HEREF, Reino Unido
Condición: Very Good. Light shelf wear otherwise vg throughout. Nº de ref. del artículo: 087832-4
Cantidad disponible: 1 disponibles
Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
Condición: Good. 208 pp., softcover, some library markings, but textually clean with a solid binding. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1177592
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Nº de ref. del artículo: 4892642
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Symmetries and singularity structures play important roles in the study of nonlinear dynamical systems. It was Sophus Lie who originally stressed the importance of symmetries and invariance in the study of nonlinear differential equations. How ever, the full potentialities of symmetries had been realized only after the advent of solitons in 1965. It is now a well-accepted fact that associated with the infinite number of integrals of motion of a given soliton system, an infinite number of gep. eralized Lie BAcklund symmetries exist. The associated bi-Hamiltonian struc ture, Kac-Moody, Vrrasoro algebras, and so on, have been increasingly attracting the attention of scientists working in this area. Similarly, in recent times the role of symmetries in analyzing both the classical and quantum integrable and nonintegrable finite dimensional systems has been remarkable. On the other hand, the works of Fuchs, Kovalevskaya, Painleve and coworkers on the singularity structures associated with the solutions of nonlinear differen tial equations have helped to classify first and second order nonlinear ordinary differential equations. The recent work of Ablowitz, Ramani and Segur, con jecturing a connection between soliton systems and Painleve equations that are free from movable critical points, has motivated considerably the search for the connection between integrable dynamical systems with finite degrees of freedom and the Painleve property. Weiss, Tabor and Carnevale have extended these ideas to partial differential equations. 224 pp. Englisch. Nº de ref. del artículo: 9783540530923
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Symmetries and singularity structures play important roles in the study of nonlinear dynamical systems. It was Sophus Lie who originally stressed the importance of symmetries and invariance in the study of nonlinear differential equations. How ever, the full potentialities of symmetries had been realized only after the advent of solitons in 1965. It is now a well-accepted fact that associated with the infinite number of integrals of motion of a given soliton system, an infinite number of gep. eralized Lie BAcklund symmetries exist. The associated bi-Hamiltonian struc ture, Kac-Moody, Vrrasoro algebras, and so on, have been increasingly attracting the attention of scientists working in this area. Similarly, in recent times the role of symmetries in analyzing both the classical and quantum integrable and nonintegrable finite dimensional systems has been remarkable. On the other hand, the works of Fuchs, Kovalevskaya, Painleve and coworkers on the singularity structures associated with the solutions of nonlinear differen tial equations have helped to classify first and second order nonlinear ordinary differential equations. The recent work of Ablowitz, Ramani and Segur, con jecturing a connection between soliton systems and Painleve equations that are free from movable critical points, has motivated considerably the search for the connection between integrable dynamical systems with finite degrees of freedom and the Painleve property. Weiss, Tabor and Carnevale have extended these ideas to partial differential equations. Nº de ref. del artículo: 9783540530923
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540530923_new
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 261772689
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Symmetries and singularity structures play important roles in the study of nonlinear dynamical systems. It was Sophus Lie who originally stressed the importance of symmetries and invariance in the study of nonlinear differential equations. How ever, the full potentialities of symmetries had been realized only after the advent of solitons in 1965. It is now a well-accepted fact that associated with the infinite number of integrals of motion of a given soliton system, an infinite number of gep. eralized Lie BAcklund symmetries exist. The associated bi-Hamiltonian struc ture, Kac-Moody, Vrrasoro algebras, and so on, have been increasingly attracting the attention of scientists working in this area. Similarly, in recent times the role of symmetries in analyzing both the classical and quantum integrable and nonintegrable finite dimensional systems has been remarkable. On the other hand, the works of Fuchs, Kovalevskaya, Painleve and coworkers on the singularity structures associated with the solutions of nonlinear differen tial equations have helped to classify first and second order nonlinear ordinary differential equations. The recent work of Ablowitz, Ramani and Segur, con jecturing a connection between soliton systems and Painleve equations that are free from movable critical points, has motivated considerably the search for the connection between integrable dynamical systems with finite degrees of freedom and the Painleve property. Weiss, Tabor and Carnevale have extended these ideas to partial differential equations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 224 pp. Englisch. Nº de ref. del artículo: 9783540530923
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand. Nº de ref. del artículo: 7123790
Cantidad disponible: 4 disponibles