In previous work [6], we presented a novel information theoretic approach for calculating fMRI activation maps. The information-theoretic approach is - pealing in that it is a principled methodology requiring few assumptions about the structure of the fMRI signal. In that approach, activation was quanti?ed by measuring the mutual information (MI) between the protocol signal and the fMRI time-series at a givenvoxel.This measureis capable of detecting unknown nonlinear and higher-order statistical dependencies. Furthermore, it is relatively straightforward to implement. In practice,activation decisions at eachvoxelareindependent of neighboring voxels. Spurious responses are then removed by ad hoc techniques (e.g. morp- logicaloperators).Inthispaper,wedescribeanautomaticmaximumaposteriori (MAP) detection method where the well-known Ising model is used as a spatial prior.The Isingspatialpriordoes not assumethat the time-seriesofneighboring voxelsareindependentofeachother.Furthermore,removalofspuriousresponses is an implicit component of the detection formulation. In order to formulate the calculation of the activation map using this technique we ?rst demonstrate that the information-theoretic approach has a natural interpretation in the hypo- esis testing framework and that, speci? cally, our estimate of MI approximates the log-likelihood ratio of that hypothesis test. Consequently, the MAP det- tion problem using the Ising model can be formulated and solved exactly in polynomial time using the Ford and Fulkerson method [4]. We compare the results of our approach with and without spatial priors to an approachbased on the general linear model (GLM) popularized by Fristonet al [3]. We present results from three fMRI data sets. The data sets test motor, auditory, and visual cortex activation, respectively.
"Sinopsis" puede pertenecer a otra edición de este libro.
In previous work [6], we presented a novel information theoretic approach for calculating fMRI activation maps. The information-theoretic approach is - pealing in that it is a principled methodology requiring few assumptions about the structure of the fMRI signal. In that approach, activation was quanti?ed by measuring the mutual information (MI) between the protocol signal and the fMRI time-series at a givenvoxel.This measureis capable of detecting unknown nonlinear and higher-order statistical dependencies. Furthermore, it is relatively straightforward to implement. In practice,activation decisions at eachvoxelareindependent of neighboring voxels. Spurious responses are then removed by ad hoc techniques (e.g. morp- logicaloperators).Inthispaper,wedescribeanautomaticmaximumaposteriori (MAP) detection method where the well-known Ising model is used as a spatial prior.The Isingspatialpriordoes not assumethat the time-seriesofneighboring voxelsareindependentofeachother.Furthermore,removalofspuriousresponses is an implicit component of the detection formulation. In order to formulate the calculation of the activation map using this technique we ?rst demonstrate that the information-theoretic approach has a natural interpretation in the hypo- esis testing framework and that, speci? cally, our estimate of MI approximates the log-likelihood ratio of that hypothesis test. Consequently, the MAP det- tion problem using the Ising model can be formulated and solved exactly in polynomial time using the Ford and Fulkerson method [4]. We compare the results of our approach with and without spatial priors to an approachbased on the general linear model (GLM) popularized by Fristonet al [3]. We present results from three fMRI data sets. The data sets test motor, auditory, and visual cortex activation, respectively.
This book constitutes the refereed proceedings of the Third International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2000, held in Pittsburgh, PA, USA in October 2000. The 136 papers presented were carefully reviewed and selected from a total of 194 submissions. The book offers topical sections on neuroimaging and neuroscience, segmentation, oncology, medical image analysis and visualization, registration, surgical planning and simulation, endoscopy and laparoscopy, cardiac image analysis, vascular image analysis, visualization, surgical navigation, medical robotics, plastic and craniofacial surgery, and orthopaedics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 64,70 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,99 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In previous work [6], we presented a novel information theoretic approach for calculating fMRI activation maps. The information-theoretic approach is - pealing in that it is a principled methodology requiring few assumptions about the structure of the fMRI signal. In that approach, activation was quanti ed by measuring the mutual information (MI) between the protocol signal and the fMRI time-series at a givenvoxel.This measureis capable of detecting unknown nonlinear and higher-order statistical dependencies. Furthermore, it is relatively straightforward to implement. In practice,activation decisions at eachvoxelareindependent of neighboring voxels. Spurious responses are then removed by ad hoc techniques (e.g. morp- logicaloperators).Inthispaper,wedescribeanautomaticmaximumap osteriori (MAP) detection method where the well-known Ising model is used as a spatial prior.The Isingspatialpriordoes not assumethat the time-seriesofneighboring voxelsareindependentofeachother.Furthermore,removalofspuriousresponses is an implicit component of the detection formulation. In order to formulate the calculation of the activation map using this technique we rst demonstrate that the information-theoretic approach has a natural interpretation in the hypo- esis testing framework and that, speci cally, our estimate of MI approximates the log-likelihood ratio of that hypothesis test. Consequently, the MAP det- tion problem using the Ising model can be formulated and solved exactly in polynomial time using the Ford and Fulkerson method [4]. We compare the results of our approach with and without spatial priors to an approachbased on the general linear model (GLM) popularized by Fristonet al [3]. We present results from three fMRI data sets. The data sets test motor, auditory, and visual cortex activation, respectively. Nº de ref. del artículo: 9783540411895
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Neuroimaging and Neurosurgery.- A 3-Dimensional Database of Deep Brain Functional Anatomy, and Its Application to Image-Guided Neurosurgery.- Simulation of Corticospinal Tract Displacement in Patients with Brain Tumors.- Registration of 3D Intraoperative MR. Nº de ref. del artículo: 4889147
Cantidad disponible: Más de 20 disponibles
Librería: GuthrieBooks, Spring Branch, TX, Estados Unidos de America
Paperback. Condición: Very Good. Ex-library paperback in very nice condition with the usual markings and attachments. Nº de ref. del artículo: UTD14a-14508
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -visual cortex activation, respectively.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 1312 pp. Englisch. Nº de ref. del artículo: 9783540411895
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In previous work [6], we presented a novel information theoretic approach for calculating fMRI activation maps. The information-theoretic approach is - pealing in that it is a principled methodology requiring few assumptions about the structure of the fMRI signal. In that approach, activation was quanti ed by measuring the mutual information (MI) between the protocol signal and the fMRI time-series at a givenvoxel.This measureis capable of detecting unknown nonlinear and higher-order statistical dependencies. Furthermore, it is relatively straightforward to implement. In practice,activation decisions at eachvoxelareindependent of neighboring voxels. Spurious responses are then removed by ad hoc techniques (e.g. morp- logicaloperators).Inthispaper,wedescribeanautomaticmaximumaposteriori (MAP) detection method where the well-known Ising model is used as a spatial prior.The Isingspatialpriordoes not assumethat the time-seriesofneighboring voxelsareindependentofeachother.Furthermore,removalofspurious responses is an implicit component of the detection formulation. In order to formulate the calculation of the activation map using this technique we rst demonstrate that the information-theoretic approach has a natural interpretation in the hypo- esis testing framework and that, speci cally, our estimate of MI approximates the log-likelihood ratio of that hypothesis test. Consequently, the MAP det- tion problem using the Ising model can be formulated and solved exactly in polynomial time using the Ford and Fulkerson method [4]. We compare the results of our approach with and without spatial priors to an approachbased on the general linear model (GLM) popularized by Fristonet al [3]. We present results from three fMRI data sets. The data sets test motor, auditory, and visual cortex activation, respectively. 1312 pp. Englisch. Nº de ref. del artículo: 9783540411895
Cantidad disponible: 2 disponibles