The purpose of this modest report is to present in a simplified manner some of the computational methods that have been developed in the last ten years for the solution of optimal control problems. Only those methods that are based on the minimum (maximum) principle of Pontriagin are discussed here. The autline of the report is as follows: In the first two sections a control problem of Bolza is formulated and the necessary conditions in the form of the minimum principle are given. The method of steepest descent and a conjugate gradient-method are dis cussed in Section 3. In the remaining sections, the successive sweep method, the Newton-Raphson method and the generalized Newton-Raphson method (also called quasilinearization method) ar~ presented from a unified approach which is based on the application of Newton Raphson approximation to the necessary conditions of optimality. The second-variation method and other shooting methods based on minimizing an error function are also considered. TABLE OF CONTENTS 1. 0 INTRODUCTION 1 2. 0 NECESSARY CONDITIONS FOR OPTIMALITY •••••••• 2 3. 0 THE GRADIENT METHOD 4 3. 1 Min H Method and Conjugate Gradient Method •. •••••••••. . . . ••••••. ••••••••. • 8 3. 2 Boundary Constraints •••••••••••. ••••. • 9 3. 3 Problems with Control Constraints ••. •• 15 4. 0 SUCCESSIVE SWEEP METHOD •••••••••••••••••••• 18 4. 1 Final Time Given Implicitly ••••. •••••• 22 5. 0 SECOND-VARIATION METHOD •••••••••••••••••••• 23 6. 0 SHOOTING METHODS ••••••••••••••••••••••••••• 27 6. 1 Newton-Raphson Method ••••••••••••••••• 27 6.
"Sinopsis" puede pertenecer a otra edición de este libro.
The purpose of this modest report is to present in a simplified manner some of the computational methods that have been developed in the last ten years for the solution of optimal control problems. Only those methods that are based on the minimum (maximum) principle of Pontriagin are discussed here. The autline of the report is as follows: In the first two sections a control problem of Bolza is formulated and the necessary conditions in the form of the minimum principle are given. The method of steepest descent and a conjugate gradient-method are dis cussed in Section 3. In the remaining sections, the successive sweep method, the Newton-Raphson method and the generalized Newton-Raphson method (also called quasilinearization method) ar~ presented from a unified approach which is based on the application of Newton Raphson approximation to the necessary conditions of optimality. The second-variation method and other shooting methods based on minimizing an error function are also considered. TABLE OF CONTENTS 1. 0 INTRODUCTION 1 2. 0 NECESSARY CONDITIONS FOR OPTIMALITY ········ 2 3. 0 THE GRADIENT METHOD 4 3. 1 Min H Method and Conjugate Gradient Method ·. ·········. . . . ······. ········. · 8 3. 2 Boundary Constraints ···········. ····. · 9 3. 3 Problems with Control Constraints ··. ·· 15 4. 0 SUCCESSIVE SWEEP METHOD ···················· 18 4. 1 Final Time Given Implicitly ····. ······ 22 5. 0 SECOND-VARIATION METHOD ···················· 23 6. 0 SHOOTING METHODS ··························· 27 6. 1 Newton-Raphson Method ················· 27 6.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020156727
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783540049517
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. spi rep edition. 56 pages. 10.01x7.01x0.13 inches. In Stock. Nº de ref. del artículo: x-3540049517
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The purpose of this modest report is to present in a simplified manner some of the computational methods that have been developed in the last ten years for the solution of optimal control problems. Only those methods that are based on the minimum (maximum) . Nº de ref. del artículo: 4878615
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783540049517
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The purpose of this modest report is to present in a simplified manner some of the computational methods that have been developed in the last ten years for the solution of optimal control problems. Only those methods that are based on the minimum (maximum) principle of Pontriagin are discussed here. The autline of the report is as follows: In the first two sections a control problem of Bolza is formulated and the necessary conditions in the form of the minimum principle are given. The method of steepest descent and a conjugate gradient-method are dis cussed in Section 3. In the remaining sections, the successive sweep method, the Newton-Raphson method and the generalized Newton-Raphson method (also called quasilinearization method) ar~ presented from a unified approach which is based on the application of Newton Raphson approximation to the necessary conditions of optimality. The second-variation method and other shooting methods based on minimizing an error function are also considered. TABLE OF CONTENTS 1. 0 INTRODUCTION 1 2. 0 NECESSARY CONDITIONS FOR OPTIMALITY -------- 2 3. 0 THE GRADIENT METHOD 4 3. 1 Min H Method and Conjugate Gradient Method -. ---------. . . . ------. --------. - 8 3. 2 Boundary Constraints -----------. ----. - 9 3. 3 Problems with Control Constraints --. -- 15 4. 0 SUCCESSIVE SWEEP METHOD -------------------- 18 4. 1 Final Time Given Implicitly ----. ------ 22 5. 0 SECOND-VARIATION METHOD -------------------- 23 6. 0 SHOOTING METHODS --------------------------- 27 6. 1 Newton-Raphson Method ----------------- 27 6. 56 pp. Englisch. Nº de ref. del artículo: 9783540049517
Cantidad disponible: 2 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The purpose of this modest report is to present in a simplified manner some of the computational methods that have been developed in the last ten years for the solution of optimal control problems. Only those methods that are based on the minimum (maximum) principle of Pontriagin are discussed here. The autline of the report is as follows: In the first two sections a control problem of Bolza is formulated and the necessary conditions in the form of the minimum principle are given. The method of steepest descent and a conjugate gradient-method are dis cussed in Section 3. In the remaining sections, the successive sweep method, the Newton-Raphson method and the generalized Newton-Raphson method (also called quasilinearization method) ar~ presented from a unified approach which is based on the application of Newton Raphson approximation to the necessary conditions of optimality. The second-variation method and other shooting methods based on minimizing an error function are also considered. TABLE OF CONTENTS 1. 0 INTRODUCTION 1 2. 0 NECESSARY CONDITIONS FOR OPTIMALITY ¿¿¿¿¿¿¿¿ 2 3. 0 THE GRADIENT METHOD 4 3. 1 Min H Method and Conjugate Gradient Method ¿. ¿¿¿¿¿¿¿¿¿. . . . ¿¿¿¿¿¿. ¿¿¿¿¿¿¿¿. ¿ 8 3. 2 Boundary Constraints ¿¿¿¿¿¿¿¿¿¿¿. ¿¿¿¿. ¿ 9 3. 3 Problems with Control Constraints ¿¿. ¿¿ 15 4. 0 SUCCESSIVE SWEEP METHOD ¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿ 18 4. 1 Final Time Given Implicitly ¿¿¿¿. ¿¿¿¿¿¿ 22 5. 0 SECOND-VARIATION METHOD ¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿ 23 6. 0 SHOOTING METHODS ¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿ 27 6. 1 Newton-RaphsonMethod ¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿¿ 27 6.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 56 pp. Englisch. Nº de ref. del artículo: 9783540049517
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The purpose of this modest report is to present in a simplified manner some of the computational methods that have been developed in the last ten years for the solution of optimal control problems. Only those methods that are based on the minimum (maximum) principle of Pontriagin are discussed here. The autline of the report is as follows: In the first two sections a control problem of Bolza is formulated and the necessary conditions in the form of the minimum principle are given. The method of steepest descent and a conjugate gradient-method are dis cussed in Section 3. In the remaining sections, the successive sweep method, the Newton-Raphson method and the generalized Newton-Raphson method (also called quasilinearization method) ar~ presented from a unified approach which is based on the application of Newton Raphson approximation to the necessary conditions of optimality. The second-variation method and other shooting methods based on minimizing an error function are also considered. TABLE OF CONTENTS 1. 0 INTRODUCTION 1 2. 0 NECESSARY CONDITIONS FOR OPTIMALITY -------- 2 3. 0 THE GRADIENT METHOD 4 3. 1 Min H Method and Conjugate Gradient Method -. ---------. . . . ------. --------. - 8 3. 2 Boundary Constraints -----------. ----. - 9 3. 3 Problems with Control Constraints --. -- 15 4. 0 SUCCESSIVE SWEEP METHOD -------------------- 18 4. 1 Final Time Given Implicitly ----. ------ 22 5. 0 SECOND-VARIATION METHOD -------------------- 23 6. 0 SHOOTING METHODS --------------------------- 27 6. 1 Newton-RaphsonMethod ----------------- 27 6. Nº de ref. del artículo: 9783540049517
Cantidad disponible: 1 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Computational Methods in Optimal Control Problems | I. H. Mufti | Taschenbuch | iv | Englisch | Springer | EAN 9783540049517 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 105577337
Cantidad disponible: 5 disponibles