Large-Scale and Distributed Optimization - Tapa blanda

 
9783319974798: Large-Scale and Distributed Optimization

Sinopsis

- Large-Scale and Distributed Optimization: An Introduction. - Exploiting Chordality in Optimization Algorithms for Model Predictive Control. - Decomposition Methods for Large-Scale Semidefinite Programs with Chordal Aggregate Sparsity and Partial Orthogonality. - Smoothing Alternating Direction Methods for Fully Nonsmooth Constrained Convex Optimization. - Primal-Dual Proximal Algorithms for Structured Convex Optimization: A Unifying Framework. - Block-Coordinate Primal-Dual Method for Nonsmooth Minimization over Linear Constraints. - Stochastic Forward Douglas-Rachford Splitting Method for Monotone Inclusions. - Mirror Descent and Convex Optimization Problems with Non-smooth Inequality Constraints. - Frank-Wolfe Style Algorithms for Large Scale Optimization. - Decentralized Consensus Optimization and Resource Allocation. - Communication-Efficient Distributed Optimization of Self-concordant Empirical Loss. - Numerical Construction of Nonsmooth Control Lyapunov Functions. - Convergence of an Inexact Majorization-Minimization Method for Solving a Class of Composite Optimization Problems.

"Sinopsis" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9783319974774: Large-Scale and Distributed Optimization: 2227 (Lecture Notes in Mathematics)

Edición Destacada

ISBN 10:  3319974777 ISBN 13:  9783319974774
Editorial: Springer, 2018
Tapa blanda