Artículos relacionados a Adaptive Regression for Modeling Nonlinear Relationships...

Adaptive Regression for Modeling Nonlinear Relationships (Statistics for Biology and Health) - Tapa blanda

 
9783319816388: Adaptive Regression for Modeling Nonlinear Relationships (Statistics for Biology and Health)

Sinopsis

                                                                                                                 

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

George Knafl is Professor and Biostatistician in the School of Nursing of the University of North Carolina at Chapel Hill where he teaches statistics courses to doctoral nursing students, consults with graduate students and faculty on their research, and conducts his own research. He has over 35 years of experience in teaching, consulting, and research in statistics. His research involves development of methods for searching through alternative models for data to identify an effective choice for modeling those data and the application of those methods to the analysis of health science data sets. He is also Professor Emeritus in the College of Computing and Digital Media at DePaul University and has also taught in Schools of Nursing at Yale University and the Oregon Health and Sciences University.

Kai Ding is Assistant Professor, Department of Biostatistics and Epidemiology at the University of Oklahoma (OU) Health Sciences Center. He is also Associated Member ofthe Peggy and Charles Stephenson Cancer Center (SCC) of OU Medicine. Dr. Ding received his Ph.D. in Biostatistics from the University of North Carolina at Chapel Hill in 2010. His research has focuses on survival analysis and semiparametric inference. He has been involved in the design and analysis of numerous research studies in cancer and ophthalmology and currently serves on the Scientific Review Committee and the Protocol Monitoring Committee of the SCC.                                                                                                                                                                                                                                                                          

De la contraportada

This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible.

A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the standard, logistic, and Poisson regression contexts with continuous, discrete, and counts outcomes, respectively, either univariate or multivariate. The book also provides a comparison of adaptive modeling to generalized additive modeling (GAM) and multiple adaptive regression splines (MARS) for univariate outcomes.

The authors have created customized SAS macros for use in conducting adaptive regression modeling. These macros and code for conducting the analyses discussed in the book are available through the first author's website and online via the book’s Springer website. Detailed descriptions of how to use these macros and interpret their output appear throughout the book. These methods can be implemented using other programs.

  • Provides insight into modeling of nonlinear relationships and also justifications for when to use them, thereby providing novel insights about relationships
  • Addresses not only adaptive generation of additive models but also of models based on nonlinear interactions
  • Discusses adaptive modeling of variances/dispersions as well as of means
  • Highlights both univariate and multivariate outcomes, rather than solely univariate outcomes



"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 5,20 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783319339443: Adaptive Regression for Modeling Nonlinear Relationships (Statistics for Biology and Health)

Edición Destacada

ISBN 10:  3319339443 ISBN 13:  9783319339443
Editorial: Springer, 2016
Tapa dura

Resultados de la búsqueda para Adaptive Regression for Modeling Nonlinear Relationships...

Imagen de archivo

Knafl, George J.; Ding, Kai
Publicado por Springer, 2018
ISBN 10: 3319816381 ISBN 13: 9783319816388
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783319816388_new

Contactar al vendedor

Comprar nuevo

EUR 76,47
Convertir moneda
Gastos de envío: EUR 5,20
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

George J. Knafl|Kai Ding
Publicado por Springer International Publishing, 2018
ISBN 10: 3319816381 ISBN 13: 9783319816388
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides insight into modeling of nonlinear relationships and also justifications for when to use them, thereby providing novel insights about relationshipsAddresses not only adaptive generation of additive models but also of . Nº de ref. del artículo: 385706014

Contactar al vendedor

Comprar nuevo

EUR 64,33
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kai Ding
ISBN 10: 3319816381 ISBN 13: 9783319816388
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible.A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the standard, logistic, and Poisson regression contexts with continuous, discrete, and counts outcomes, respectively, either univariate or multivariate. The book also provides a comparison of adaptive modeling to generalized additive modeling (GAM) and multiple adaptive regression splines (MARS) for univariate outcomes. The authors have created customized SAS macros for use in conducting adaptive regression modeling. These macros and code for conducting the analyses discussed in the book are available through the first author's website and online via the book's Springer website. Detailed descriptions of how to use these macros and interpret their output appear throughout the book. These methods can be implemented using other programs. 400 pp. Englisch. Nº de ref. del artículo: 9783319816388

Contactar al vendedor

Comprar nuevo

EUR 74,89
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Kai Ding
ISBN 10: 3319816381 ISBN 13: 9783319816388
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible.A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the standard, logistic, and Poisson regression contexts with continuous, discrete, and counts outcomes, respectively, either univariate or multivariate. The book also provides a comparison of adaptive modeling to generalized additive modeling (GAM) and multiple adaptive regression splines (MARS) for univariate outcomes. The authors have created customized SAS macros for use in conducting adaptive regression modeling. These macros and code for conducting the analyses discussed in the book are available through the first author's website and online via the book's Springer website. Detailed descriptions of how to use these macros and interpret their output appear throughout the book. These methods can be implemented using other programs. Nº de ref. del artículo: 9783319816388

Contactar al vendedor

Comprar nuevo

EUR 74,89
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

George J. Knafl, Kai Ding
Publicado por Springer 2018-06-14, 2018
ISBN 10: 3319816381 ISBN 13: 9783319816388
Nuevo Paperback

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783319816388

Contactar al vendedor

Comprar nuevo

EUR 75,84
Convertir moneda
Gastos de envío: EUR 17,35
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen de archivo

Knafl, George J.; Ding, Kai
Publicado por Springer, 2018
ISBN 10: 3319816381 ISBN 13: 9783319816388
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 372. Nº de ref. del artículo: 26381427785

Contactar al vendedor

Comprar nuevo

EUR 89,91
Convertir moneda
Gastos de envío: EUR 9,86
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Knafl, George J.
Publicado por Springer, 2018
ISBN 10: 3319816381 ISBN 13: 9783319816388
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Brook Bookstore On Demand, Napoli, NA, Italia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: 1b0198c1a579c49c722fc570936898a9

Contactar al vendedor

Comprar nuevo

EUR 62,23
Convertir moneda
Gastos de envío: EUR 40,00
De Italia a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Knafl, George J.; Ding, Kai
Publicado por Springer, 2018
ISBN 10: 3319816381 ISBN 13: 9783319816388
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand pp. 372. Nº de ref. del artículo: 382443414

Contactar al vendedor

Comprar nuevo

EUR 92,99
Convertir moneda
Gastos de envío: EUR 10,25
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Knafl, George J.; Ding, Kai
Publicado por Springer, 2018
ISBN 10: 3319816381 ISBN 13: 9783319816388
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND pp. 372. Nº de ref. del artículo: 18381427779

Contactar al vendedor

Comprar nuevo

EUR 95,05
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Kai Ding
ISBN 10: 3319816381 ISBN 13: 9783319816388
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible.A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the standard, logistic, and Poisson regression contexts with continuous, discrete, and counts outcomes, respectively, either univariate or multivariate. The book also provides a comparison of adaptive modeling to generalized additive modeling (GAM) and multiple adaptive regression splines (MARS) for univariate outcomes.The authors have created customized SAS macros for use in conducting adaptive regression modeling. These macros and code for conducting the analyses discussed in the book are available through the first author's website and online via the book¿s Springer website. Detailed descriptions of how to use these macros and interpret their output appear throughout the book. These methods can be implemented using other programs.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 400 pp. Englisch. Nº de ref. del artículo: 9783319816388

Contactar al vendedor

Comprar nuevo

EUR 74,89
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 2 copia(s) de este libro

Ver todos los resultados de su búsqueda