Artículos relacionados a Form Versus Function: Theory and Models for Neuronal...

Form Versus Function: Theory and Models for Neuronal Substrates (Springer Theses) - Tapa dura

 
9783319395517: Form Versus Function: Theory and Models for Neuronal Substrates (Springer Theses)

Sinopsis

<DIV>THIS THESIS ADDRESSES ONE OF THE MOST FUNDAMENTAL CHALLENGES FOR MODERN SCIENCE: HOW CAN THE BRAIN AS A NETWORK OF NEURONS PROCESS INFORMATION, HOW CAN IT CREATE AND STORE INTERNAL MODELS OF OUR WORLD, AND HOW CAN IT INFER CONCLUSIONS FROM AMBIGUOUS DATA? THE AUTHOR ADDRESSES THESE QUESTIONS WITH THE RIGOROUS LANGUAGE OF MATHEMATICS AND THEORETICAL PHYSICS, AN APPROACH THAT REQUIRES A HIGH DEGREE OF ABSTRACTION TO TRANSFER RESULTS OF WET LAB BIOLOGY TO FORMAL MODELS.</DIV><DIV>&NBSP;</DIV><DIV>THE THESIS STARTS WITH AN IN-DEPTH DESCRIPTION OF THE STATE-OF-THE-ART IN THEORETICAL NEUROSCIENCE, WHICH IT SUBSEQUENTLY USES AS A BASIS TO DEVELOP SEVERAL NEW AND ORIGINAL IDEAS. THROUGHOUT THE TEXT, THE AUTHOR CONNECTS THE FORM AND FUNCTION OF NEURONAL NETWORKS. THIS IS DONE IN ORDER TO ACHIEVE FUNCTIONAL PERFORMANCE OF BIOLOGICAL BRAINS BY TRANSFERRING THEIR FORM TO SYNTHETIC ELECTRONICS SUBSTRATES, AN APPROACH REFERRED TO AS NEUROMORPHIC COMPUTING. THE OBVIOUS ASPECT THAT THIS TRANSFER CAN NEVER BE PERFECT BUT NECESSARILY LEADS TO PERFORMANCE DIFFERENCES IS SUBSTANTIATED AND EXPLORED IN DETAIL.</DIV><DIV>&NBSP;</DIV><DIV>THE AUTHOR ALSO INTRODUCES A NOVEL INTERPRETATION OF THE FIRING ACTIVITY OF NEURONS. HE PROPOSES A PROBABILISTIC INTERPRETATION OF THIS ACTIVITY AND SHOWS BY MEANS OF FORMAL DERIVATIONS THAT STOCHASTIC NEURONS CAN SAMPLE FROM INTERNALLY STORED PROBABILITY DISTRIBUTIONS. THIS IS CORROBORATED BY THE AUTHOR’S RECENT FINDINGS, WHICH CONFIRM THAT BIOLOGICAL FEATURES LIKE THE HIGH CONDUCTANCE STATE OF NETWORKS ENABLE THIS MECHANISM. THE AUTHOR GOES ON TO SHOW THAT NEURAL SAMPLING CAN BE IMPLEMENTED ON SYNTHETIC NEUROMORPHIC CIRCUITS, PAVING THE WAY FOR FUTURE APPLICATIONS IN MACHINE LEARNING AND COGNITIVE COMPUTING, FOR EXAMPLE AS ENERGY-EFFICIENT IMPLEMENTATIONS OF DEEP LEARNING NETWORKS.</DIV><DIV>&NBSP;</DIV><DIV>THE THESIS OFFERS AN ESSENTIAL RESOURCE FO

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

This thesis addresses one of the most fundamental challenges for modern science: how can the brain as a network of neurons process information, how can it create and store internal models of our world, and how can it infer conclusions from ambiguous data? The author addresses these questions with the rigorous language of mathematics and theoretical physics, an approach that requires a high degree of abstraction to transfer results of wet lab biology to formal models. The thesis starts with an in-depth description of the state-of-the-art in theoretical neuroscience, which it subsequently uses as a basis to develop several new and original ideas. Throughout the text, the author connects the form and function of neuronal networks. This is done in order to achieve functional performance of biological brains by transferring their form to synthetic electronics substrates, an approach referred to as neuromorphic computing. The obvious aspect that this transfer can never be perfect but necessarily leads to performance differences is substantiated and explored in detail. The author also introduces a novel interpretation of the firing activity of neurons. He proposes a probabilistic interpretation of this activity and shows by means of formal derivations that stochastic neurons can sample from internally stored probability distributions. This is corroborated by the author’s recent findings, which confirm that biological features like the high conductance state of networks enable this mechanism. The author goes on to show that neural sampling can be implemented on synthetic neuromorphic circuits, paving the way for future applications in machine learning and cognitive computing, for example as energy-efficient implementations of deep learning networks. The thesis offers an essential resource for newcomers to the field and an inspiration for scientists working in theoretical neuroscience and the future of computing. 

Biografía del autor

Mihai Petrovici started studying Physics at the University of Heidelberg in 2001. During his early undergraduate days, he worked on particle tracking for the ALICE experiment at CERN. For his diploma thesis, he moved to solid state physics, where he studied glasses at low temperatures. He began his PhD in 2008 in the Electronic Vision(s) group of Karlheinz Meier and Johannes Schemmel, where he worked at the interface of theoretical neuroscience and neuromorphic computing, earning his doctorate with summa cum laude in 2015. During this time, he established a theoretical department within the Vision(s) group, which he is currently leading.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2016
  • ISBN 10 3319395513
  • ISBN 13 9783319395517
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de edición1
  • Número de páginas402

Comprar usado

Condición: Como Nuevo
Like New
Ver este artículo

EUR 29,30 gastos de envío desde Reino Unido a Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 3,52 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783319819136: Form Versus Function: Theory and Models for Neuronal Substrates (Springer Theses)

Edición Destacada

ISBN 10:  3319819135 ISBN 13:  9783319819136
Editorial: Springer, 2018
Tapa blanda

Resultados de la búsqueda para Form Versus Function: Theory and Models for Neuronal...

Imagen de archivo

Petrovici, Mihai Alexandru
Publicado por Springer, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020096942

Contactar al vendedor

Comprar nuevo

EUR 106,60
Convertir moneda
Gastos de envío: EUR 3,52
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Mihai Alexandru Petrovici
ISBN 10: 3319395513 ISBN 13: 9783319395517
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This thesis addresses one of the most fundamental challenges for modern science: how can the brain as a network of neurons process information, how can it create and store internal models of our world, and how can it infer conclusions from ambiguous data The author addresses these questions with the rigorous language of mathematics and theoretical physics, an approach that requires a high degree of abstraction to transfer results of wet lab biology to formal models.The thesis starts with an in-depth description of the state-of-the-art in theoretical neuroscience, which it subsequently uses as a basis to develop several new and original ideas. Throughout the text, the author connects the form and function of neuronal networks. This is done in order to achieve functional performance of biological brains by transferring their form to synthetic electronics substrates, an approach referred to as neuromorphic computing. The obvious aspect that this transfer can never be perfect but necessarily leads to performance differences is substantiated and explored in detail.The author also introduces a novel interpretation of the firing activity of neurons. He proposes a probabilistic interpretation of this activity and shows by means of formal derivations that stochastic neurons can sample from internally stored probability distributions. This is corroborated by the author's recent findings, which confirm that biological features like the high conductance state of networks enable this mechanism. The author goes on to show that neural sampling can be implemented on synthetic neuromorphic circuits, paving the way for future applications in machine learning and cognitive computing, for example as energy-efficient implementations of deep learning networks.The thesis offers an essential resource for newcomers to the field and an inspiration for scientists working in theoretical neuroscience and the future of computing. 400 pp. Englisch. Nº de ref. del artículo: 9783319395517

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Petrovici, Mihai Alexandru
Publicado por Springer, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783319395517

Contactar al vendedor

Comprar nuevo

EUR 131,00
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Petrovici, Mihai Alexandru
Publicado por Springer, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In English. Nº de ref. del artículo: ria9783319395517_new

Contactar al vendedor

Comprar nuevo

EUR 117,86
Convertir moneda
Gastos de envío: EUR 14,04
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Mihai Alexandru Petrovici
Publicado por Springer International Publishing, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This thesis addresses one of the most fundamental challenges for modern science: how can the brain as a network of neurons process information, how can it create and store internal models of our world, and how can it infer conclusions from ambiguous data The author addresses these questions with the rigorous language of mathematics and theoretical physics, an approach that requires a high degree of abstraction to transfer results of wet lab biology to formal models.The thesis starts with an in-depth description of the state-of-the-art in theoretical neuroscience, which it subsequently uses as a basis to develop several new and original ideas. Throughout the text, the author connects the form and function of neuronal networks. This is done in order to achieve functional performance of biological brains by transferring their form to synthetic electronics substrates, an approach referred to as neuromorphic computing. The obvious aspect that this transfercan never be perfect but necessarily leads to performance differences is substantiated and explored in detail.The author also introduces a novel interpretation of the firing activity of neurons. He proposes a probabilistic interpretation of this activity and shows by means of formal derivations that stochastic neurons can sample from internally stored probability distributions. This is corroborated by the author's recent findings, which confirm that biological features like the high conductance state of networks enable this mechanism. The author goes on to show that neural sampling can be implemented on synthetic neuromorphic circuits, paving the way for future applications in machine learning and cognitive computing, for example as energy-efficient implementations of deep learning networks.The thesis offers an essential resource for newcomers to the field and an inspiration for scientists working in theoretical neuroscience and the future of computing. Nº de ref. del artículo: 9783319395517

Contactar al vendedor

Comprar nuevo

EUR 106,99
Convertir moneda
Gastos de envío: EUR 31,81
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Mihai Alexandru Petrovici
Publicado por Springer International Publishing, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Nominated as an outstanding PhD thesis by Heidelberg University, GermanyProvides an excellent state-of-the-art overview of theoretical neuroscienceAn inspiration for newcomers to engage in this fascinating and f. Nº de ref. del artículo: 120395793

Contactar al vendedor

Comprar nuevo

EUR 92,27
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Petrovici, Mihai Alexandru (Author)
Publicado por Springer, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 374 pages. 9.25x6.10x1.18 inches. In Stock. Nº de ref. del artículo: x-3319395513

Contactar al vendedor

Comprar nuevo

EUR 161,81
Convertir moneda
Gastos de envío: EUR 11,72
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Petrovici, Mihai Alexandru
Publicado por Springer, 2016
ISBN 10: 3319395513 ISBN 13: 9783319395517
Antiguo o usado Tapa dura

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA77333193955136

Contactar al vendedor

Comprar usado

EUR 165,40
Convertir moneda
Gastos de envío: EUR 29,30
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito