This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concepts in real analysis and introduces new, accessible methods for both students and instructors.
The first half of the book develops both Lebesgue measure and, with essentially no additional work for the student, general Borel measures for the real line. Notation indicates when a result holds only for Lebesgue measure. Differentiation and absolute continuity are presented using a local maximal function, resulting in an exposition that is both simpler and more general than the traditional approach.
The second half deals with general measures and functional analysis, including Hilbert spaces, Fourier series, and the Riesz representation theorem for positive linear functionals on continuous functions with compact support. To correctly discuss weak limits of measures, one needs the notion of a topological space rather than just a metric space, so general topology is introduced in terms of a base of neighborhoods at a point. The development of results then proceeds in parallel with results for metric spaces, where the base is generated by balls centered at a point. The text concludes with appendices on covering theorems for higher dimensions and a short introduction to nonstandard analysis including important applications to probability theory and mathematical economics.
"Sinopsis" puede pertenecer a otra edición de este libro.
Peter Loeb is an emeritus Professor of Mathematics at the University of Illinois in Champaign-Urbana. His research is centered on problems of real analysis and applications of model theory to real analysis.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 10,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 10,14 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Alemania
XII, 274 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Nº de ref. del artículo: 6431GB
Cantidad disponible: 3 disponibles
Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
Hardcover. Condición: Very Good. No Jacket. Former library book; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.55. Nº de ref. del artículo: G3319307428I4N10
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 274. Nº de ref. del artículo: 372018319
Cantidad disponible: 4 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 274. Nº de ref. del artículo: 26375075664
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 274. Nº de ref. del artículo: 18375075674
Cantidad disponible: 4 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Gebundene Ausgabe. Condición: Sehr gut. Gebraucht - Sehr gut SG - Ungelesenes Mängelexemplar, gestempelt, mit leichten Lagerspuren - This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concepts in real analysis and introduces new, accessible methods for both students and instructors. The first half of the book develops both Lebesgue measure and, with essentially no additional work for the student, general Borel measures for the real line. Notation indicates when a result holds only for Lebesgue measure. Differentiation and absolute continuity are presented using a local maximal function, resulting in an exposition that is both simpler and more general than the traditional approach. The second half deals with general measures and functional analysis, including Hilbert spaces, Fourier series, and the Riesz representation theorem for positive linear functionals on continuous functions with compact support. To correctly discuss weak limits of measures, one needs the notion of a topological space rather than just a metric space, so general topology is introduced in terms of a base of neighborhoods at a point. The development of results then proceeds in parallel with results for metric spaces, where the base is generated by balls centered at a point. The text concludes with appendices on covering theorems for higher dimensions and a short introduction to nonstandard analysis including important applications to probability theory and mathematical economics. Nº de ref. del artículo: INF1000553655
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concepts in real analysis and introduces new, accessible methods for both students and instructors.The first half of the book develops both Lebesgue measure and, with essentially no additional work for the student, general Borel measures for the real line. Notation indicates when a result holds only for Lebesgue measure. Differentiation and absolute continuity are presented using a local maximal function, resulting in an exposition that is both simpler and more general than the traditional approach.The second half deals with general measures and functional analysis, including Hilbert spaces, Fourier series, and the Riesz representation theorem for positive linear functionals on continuous functions with compact support. To correctly discuss weak limits of measures, one needs the notion of a topological space rather than just a metric space, so general topology is introduced in terms of a base of neighborhoods at a point. The development of results then proceeds in parallel with results for metric spaces, where the base is generated by balls centered at a point. The text concludes with appendices on covering theorems for higher dimensions and a short introduction to nonstandard analysis including important applications to probability theory and mathematical economics. 288 pp. Englisch. Nº de ref. del artículo: 9783319307428
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Written by one of the leading scholars in the field Includes a novel presentation of differentiation and absolute continuity using a local maximum function, resulting in an exposition that is both simpler and more general than the traditional. Nº de ref. del artículo: 117107908
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concepts in real analysis and introduces new, accessible methods for both students and instructors.The first half of the book develops both Lebesgue measure and, with essentially no additional work for the student, general Borel measures for the real line. Notation indicates when a result holds only for Lebesgue measure. Differentiation and absolute continuity are presented using a local maximal function, resulting in an exposition that is both simpler and more general than the traditional approach.The second half deals with general measures and functional analysis, including Hilbert spaces, Fourier series, and the Riesz representation theorem for positive linear functionals on continuous functions with compact support. To correctly discuss weak limits of measures, one needs the notion of a topological space rather than just a metric space, so general topology is introduced in terms of a base of neighborhoods at a point. The development of results then proceeds in parallel with results for metric spaces, where the base is generated by balls centered at a point. The text concludes with appendices on covering theorems for higher dimensions and a short introduction to nonstandard analysis including important applications to probability theory and mathematical economics. Nº de ref. del artículo: 9783319307428
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -This textbook is designed for a year-long course in real analysis taken by beginning graduate and advanced undergraduate students in mathematics and other areas such as statistics, engineering, and economics. Written by one of the leading scholars in the field, it elegantly explores the core concepts in real analysis and introduces new, accessible methods for both students and instructors.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 288 pp. Englisch. Nº de ref. del artículo: 9783319307428
Cantidad disponible: 2 disponibles