This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,25 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,25 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 24761584
Cantidad disponible: 6 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 24761584-n
Cantidad disponible: 6 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Hardcover. Condición: new. Hardcover. This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics. This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783319263373
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9783319263373
Cantidad disponible: 6 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. Nº de ref. del artículo: 374326182
Cantidad disponible: 3 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9783319263373
Cantidad disponible: 6 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Hardback. Condición: New. 1st ed. 2016. This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics. Nº de ref. del artículo: LU-9783319263373
Cantidad disponible: 3 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Hardback. Condición: New. 1st ed. 2016. This book is dedicated to study the inverse problem of ordinary differential equations, that is it focuses in finding all ordinary differential equations that satisfy a given set of properties. The Nambu bracket is the central tool in developing this approach. The authors start characterizing the ordinary differential equations in R^N which have a given set of partial integrals or first integrals. The results obtained are applied first to planar polynomial differential systems with a given set of such integrals, second to solve the 16th Hilbert problem restricted to generic algebraic limit cycles, third for solving the inverse problem for constrained Lagrangian and Hamiltonian mechanical systems, fourth for studying the integrability of a constrained rigid body. Finally the authors conclude with an analysis on nonholonomic mechanics, a generalization of the Hamiltonian principle, and the statement an solution of the inverse problem in vakonomic mechanics. Nº de ref. del artículo: LU-9783319263373
Cantidad disponible: 3 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. Nº de ref. del artículo: 26372800633
Cantidad disponible: 3 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Series: Progress in Mathematics. BIC Classification: PBKJ. Dimension: 235 x 155. . . 2016. 1st ed. 2016. Hardcover. . . . . Nº de ref. del artículo: V9783319263373
Cantidad disponible: 6 disponibles