This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics.
There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction.
This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Maria Han Veiga,
Assistant professor of mathematics, Ohio State University, Ohio, USA
Prior to joining Ohio State, she was a postdoctoral fellow at the University of Michigan in Mathematics and Data Science (MIDAS). She obtained her PhD at the University of Zurich. Her research focuses on numerical analysis for hyperbolic partial differential equations and scientific machine learning.
Dr. François Ged
Postdoctoral fellow, University of Vienna, Austria
He obtained his PhD in Mathematics at the University of Zurich, Switzerland, after which he was a postdoc fellow at the École Polytechnique Fédérale de Lausanne. His research interests gravitate around the theory of deep learning and reinforcement learning, as well as mathematical population genetics and growth-fragmentation processes.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 47496994-n
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. The Mathematics of Machine Learning: Lectures on Supervised Methods and Beyond. Book. Nº de ref. del artículo: BBS-9783111288475
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 47496994
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783111288475
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction. This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field. Nº de ref. del artículo: LU-9783111288475
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction. This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field. Introduces machine learning, with a strong focus on the mathematics underlying many of the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. This book's objective is to rigoro Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783111288475
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction. This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field. Nº de ref. del artículo: LU-9783111288475
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26398823820
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: DB-9783111288475
Cantidad disponible: 3 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 397553235
Cantidad disponible: 1 disponibles