Artículos relacionados a Mathematical Foundations of Data Science (Texts in...

Mathematical Foundations of Data Science (Texts in Computer Science) - Tapa blanda

 
9783031190766: Mathematical Foundations of Data Science (Texts in Computer Science)

Sinopsis

This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring:  Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used? Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification.  Its primary focus is on principles crucial for application success.  

Topics and features:

  • Focuses on approaches supported by mathematical arguments, rather than sole computing experiences
  • Investigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from them
  • Considers key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithms
  • Examines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problem
  • Addresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrization
  • Investigates the mathematical principles involves with natural language processing and computer vision
  • Keeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire book

    Although this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations “beyond” the sole computing experience.

    "Sinopsis" puede pertenecer a otra edición de este libro.

    Acerca del autor

    Tomas Hrycej is a pioneer in the field of artificial intelligence and neural networks, having worked in this field since the 1980s. As an example of his pioneering deeds, he worked in the 1990s at Daimler Research on self-driving cars. In his doctoral thesis, he dealt with modular learning concepts in neural networks. His most important research stations were Daimler AG, Bosch GmbH, the University of Passau and currently the University of St. Gallen. He is the author of three monographs: Neurocontrol - Towards an Industrial Control Methodology, Modular Learning in Neural Networks (both Wiley-Interscience) and Robust Control ("Robuste Regelung", Springer), as well as about 60 publications in journals and conference proceedings.

    Bernhard Bermeitinger is a research assistant at the Chair of Data Science and Natural Language Processing and is currently working on his PhD in Deep Learning.

      Matthias Cetto is a visiting researcher at the Chair of Data Science and Natural Language Processing and conducts research in the field of Natural Language Processing.
      Siegfried Handschuh is a Full professor of Data Science and Natural Language Processing at the Institute of Computer Science at the University of St. Gallen, Switzerland. He received his PhD from the University of Karlsruhe (now: Karlsruhe Institute of Technology), Germany. His PhD thesis was in Collaboration with Stanford University as part of the American DARPA DAML project. Siegfried spend eight year in Ireland, where he led the Knowledge Discovery Unit at the Insight Centre for Data Analytics in Galway. He worked with multinational companies such as HP, SAP, IBM, Motorola and Elsevier Publishing. He also conducted research on the Digital Aristotle initiative, a project by Microsoft co-funder Paul Allen. He has published over 300 scientific papers and is highly citedwith an h-index of 41 (according to Google Scholar). This makes him one of the top-ranked Computer Scientists in Switzerland.

        De la contraportada

        Although it is widely recognized that analyzing large volumes of data by intelligent methods may provide highly valuable insights, the practical success of data science has led to the development of a sometimes confusing variety of methods, approaches and views. 

        This practical textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring:  Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used? Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification.  Its primary focus is on principles crucial for application success.  

        Topics and features:

        • Focuses on approaches supported by mathematical arguments, rather thansole computing experiences
        • Investigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from them
        • Considers key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithms
        • Examines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problem
        • Addresses the trade-off between model size and volume of data available for its identification and its consequences for model parameterization
        • Investigates the mathematical principles involved with natural language processing and computer vision
        • Keeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire book

        Although this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations “beyond” the sole computing experience.

        "Sobre este título" puede pertenecer a otra edición de este libro.

        • EditorialSpringer
        • Año de publicación2024
        • ISBN 10 3031190769
        • ISBN 13 9783031190766
        • EncuadernaciónTapa blanda
        • IdiomaInglés
        • Número de páginas228
        • Contacto del fabricanteno disponible

        Comprar nuevo

        Ver este artículo

        EUR 11,00 gastos de envío desde Alemania a España

        Destinos, gastos y plazos de envío

        Otras ediciones populares con el mismo título

        9783031190735: Mathematical Foundations of Data Science (Texts in Computer Science)

        Edición Destacada

        ISBN 10:  3031190734 ISBN 13:  9783031190735
        Editorial: Springer-Verlag GmbH, 2023
        Tapa dura

        Resultados de la búsqueda para Mathematical Foundations of Data Science (Texts in...

        Imagen del vendedor

        Tomas Hrycej
        ISBN 10: 3031190769 ISBN 13: 9783031190766
        Nuevo Taschenbuch
        Impresión bajo demanda

        Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

        Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

        Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations 'beyond' the sole computing experience. 213 pp. Englisch. Nº de ref. del artículo: 9783031190766

        Contactar al vendedor

        Comprar nuevo

        EUR 64,19
        Convertir moneda
        Gastos de envío: EUR 11,00
        De Alemania a España
        Destinos, gastos y plazos de envío

        Cantidad disponible: 2 disponibles

        Añadir al carrito

        Imagen del vendedor

        Hrycej, Tomas|Bermeitinger, Bernhard|Cetto, Matthias|Handschuh, Siegfried
        ISBN 10: 3031190769 ISBN 13: 9783031190766
        Nuevo Kartoniert / Broschiert

        Librería: moluna, Greven, Alemania

        Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

        Kartoniert / Broschiert. Condición: New. Nº de ref. del artículo: 1407956550

        Contactar al vendedor

        Comprar nuevo

        EUR 55,78
        Convertir moneda
        Gastos de envío: EUR 19,49
        De Alemania a España
        Destinos, gastos y plazos de envío

        Cantidad disponible: Más de 20 disponibles

        Añadir al carrito

        Imagen del vendedor

        Tomas Hrycej
        ISBN 10: 3031190769 ISBN 13: 9783031190766
        Nuevo Taschenbuch

        Librería: AHA-BUCH GmbH, Einbeck, Alemania

        Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

        Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations 'beyond' the sole computing experience. Nº de ref. del artículo: 9783031190766

        Contactar al vendedor

        Comprar nuevo

        EUR 64,19
        Convertir moneda
        Gastos de envío: EUR 11,99
        De Alemania a España
        Destinos, gastos y plazos de envío

        Cantidad disponible: 1 disponibles

        Añadir al carrito

        Imagen de archivo

        Hrycej, Tomas; Bermeitinger, Bernhard; Cetto, Matthias; Handschuh, Siegfried
        Publicado por Springer, 2024
        ISBN 10: 3031190769 ISBN 13: 9783031190766
        Nuevo Tapa blanda

        Librería: Books Puddle, New York, NY, Estados Unidos de America

        Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

        Condición: New. 2023rd edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26402088626

        Contactar al vendedor

        Comprar nuevo

        EUR 81,09
        Convertir moneda
        Gastos de envío: EUR 9,95
        De Estados Unidos de America a España
        Destinos, gastos y plazos de envío

        Cantidad disponible: 4 disponibles

        Añadir al carrito

        Imagen de archivo

        Hrycej, Tomas; Bermeitinger, Bernhard; Cetto, Matthias; Handschuh, Siegfried
        Publicado por Springer, 2024
        ISBN 10: 3031190769 ISBN 13: 9783031190766
        Nuevo Tapa blanda
        Impresión bajo demanda

        Librería: Majestic Books, Hounslow, Reino Unido

        Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

        Condición: New. Print on Demand. Nº de ref. del artículo: 394321261

        Contactar al vendedor

        Comprar nuevo

        EUR 81,43
        Convertir moneda
        Gastos de envío: EUR 10,39
        De Reino Unido a España
        Destinos, gastos y plazos de envío

        Cantidad disponible: 4 disponibles

        Añadir al carrito

        Imagen del vendedor

        Tomas Hrycej
        ISBN 10: 3031190769 ISBN 13: 9783031190766
        Nuevo Taschenbuch

        Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

        Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

        Taschenbuch. Condición: Neu. Neuware -This textbook aims to point out the most important principles of data analysis from the mathematical point of view. Specifically, it selected these questions for exploring: Which are the principles necessary to understand the implications of an application, and which are necessary to understand the conditions for the success of methods used Theory is presented only to the degree necessary to apply it properly, striving for the balance between excessive complexity and oversimplification. Its primary focus is on principles crucial for application success.Topics and features:Focuses on approaches supported by mathematical arguments, rather than sole computing experiencesInvestigates conditions under which numerical algorithms used in data science operate, and what performance can be expected from themConsiders key data science problems: problem formulation including optimality measure; learning and generalization in relationships to training set size and number of free parameters; and convergence of numerical algorithmsExamines original mathematical disciplines (statistics, numerical mathematics, system theory) as they are specifically relevant to a given problemAddresses the trade-off between model size and volume of data available for its identification and its consequences for model parametrizationInvestigates the mathematical principles involves with natural language processing and computer visionKeeps subject coverage intentionally compact, focusing on key issues of each topic to encourage full comprehension of the entire bookAlthough this core textbook aims directly at students of computer science and/or data science, it will be of real appeal, too, to researchers in the field who want to gain a proper understanding of the mathematical foundations ¿beyond¿ the sole computing experience.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch. Nº de ref. del artículo: 9783031190766

        Contactar al vendedor

        Comprar nuevo

        EUR 64,19
        Convertir moneda
        Gastos de envío: EUR 35,00
        De Alemania a España
        Destinos, gastos y plazos de envío

        Cantidad disponible: 2 disponibles

        Añadir al carrito

        Imagen de archivo

        Hrycej, Tomas; Bermeitinger, Bernhard; Cetto, Matthias; Handschuh, Siegfried
        Publicado por Springer, 2024
        ISBN 10: 3031190769 ISBN 13: 9783031190766
        Nuevo Tapa blanda
        Impresión bajo demanda

        Librería: Biblios, Frankfurt am main, HESSE, Alemania

        Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

        Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18402088632

        Contactar al vendedor

        Comprar nuevo

        EUR 85,70
        Convertir moneda
        Gastos de envío: EUR 14,50
        De Alemania a España
        Destinos, gastos y plazos de envío

        Cantidad disponible: 4 disponibles

        Añadir al carrito