Artículos relacionados a Modern Statistics: A Computer-Based Approach with Python...

Modern Statistics: A Computer-Based Approach with Python (Statistics for Industry, Technology, and Engineering) - Tapa blanda

 
9783031075681: Modern Statistics: A Computer-Based Approach with Python (Statistics for Industry, Technology, and Engineering)

Sinopsis

This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications.  Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail.  A custom Python package is available for download, allowing students to reproduce these examples and explore others.

The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning.

Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering.  Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. 

A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses.

The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/

"In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that."

Professor Fabrizio Ruggeri
Research Director at the National Research Council, Italy
President of the International Society for Business and Industrial Statistics (ISBIS)
Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI) 

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Professor Ron Kenett is Chairman of the KPA Group, Israel and Senior Research Fellow at the Samuel Neaman Institute, Technion, Haifa Israel and Professor, University of Turin, Italy. He is an applied statistician combining expertise in academic, consulting and business domains.
Shelemyahu Zacks is a Distinguished  Professor emeritus in the Mathematical Sciences department of Binghamton University.He is a Fellow of the IMS, ASA, AAAS and an elected member of the ISI. Professor Zacks has published eleven books and more than 170 journal articles on subjects of design of experiments, statistical process control, statistical decision theory, sequential analysis, reliability and sampling from finite populations. Professor Zacks served as an Editor and Associate Editor of several Statistics and Probability journals.
Dr. Peter Gedeck, a Senior Data Scientist at Collaborative Drug Discovery, specializes in the development of machine learning algorithms to predict biological and physicochemical properties of drug candidates. In addition, he teaches data science at the University of Virginia and at statistics.com. 

De la contraportada

This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications.  Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail.  A custom Python package is available for download, allowing students to reproduce these examples and explore others.

The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning.

Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering.  Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. 

A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses

The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/

"In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that."

Professor Fabrizio Ruggeri
Research Director at the National Research Council, Italy
President of the International Society for Business and Industrial Statistics (ISBIS)
Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI) 

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Aceptable
Ver este artículo

EUR 12,47 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

GRATIS gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783031075650: Modern Statistics: A Computer-Based Approach with Python (Statistics for Industry, Technology, and Engineering)

Edición Destacada

ISBN 10:  303107565X ISBN 13:  9783031075650
Editorial: Birkhäuser, 2022
Tapa dura

Resultados de la búsqueda para Modern Statistics: A Computer-Based Approach with Python...

Imagen de archivo

Kenett
Publicado por Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuevo Tapa blanda

Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-16664

Contactar al vendedor

Comprar nuevo

EUR 70,00
Convertir moneda
Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Publicado por Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuevo Tapa blanda

Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-45604

Contactar al vendedor

Comprar nuevo

EUR 72,13
Convertir moneda
Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kenett, Ron S.,Zacks, Shelemyahu,Gedeck, Peter
Publicado por Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Antiguo o usado paperback

Librería: Books From California, Simi Valley, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Good. Nº de ref. del artículo: mon0003800685

Contactar al vendedor

Comprar usado

EUR 62,60
Convertir moneda
Gastos de envío: EUR 12,47
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Publicado por Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 464. Nº de ref. del artículo: 26398553075

Contactar al vendedor

Comprar nuevo

EUR 67,44
Convertir moneda
Gastos de envío: EUR 9,89
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Publicado por Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuevo Tapa blanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 464. Nº de ref. del artículo: 397856812

Contactar al vendedor

Comprar nuevo

EUR 69,15
Convertir moneda
Gastos de envío: EUR 10,21
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Publicado por Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuevo Tapa blanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 464. Nº de ref. del artículo: 18398553081

Contactar al vendedor

Comprar nuevo

EUR 71,38
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ron S. Kenett|Shelemyahu Zacks|Peter Gedeck
Publicado por Springer International Publishing, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuevo Kartoniert / Broschiert
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Demonstrates how to incorporate Python into the modern statistics curriculum Includes over 40 case studies to facilitate experiential learningAn accompanying Python package is available for download, allowing students to engage directly wit. Nº de ref. del artículo: 1082981294

Contactar al vendedor

Comprar nuevo

EUR 72,89
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

0
Publicado por Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuevo Tapa blanda

Librería: Basi6 International, Irving, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-347422

Contactar al vendedor

Comprar nuevo

EUR 70,00
Convertir moneda
Gastos de envío: EUR 25,80
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kenett, Ron S.; Zacks, Shelemyahu; Gedeck, Peter
Publicado por Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783031075681_new

Contactar al vendedor

Comprar nuevo

EUR 91,31
Convertir moneda
Gastos de envío: EUR 5,18
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

0
Publicado por Birkhäuser, 2023
ISBN 10: 3031075684 ISBN 13: 9783031075681
Nuevo Tapa blanda

Librería: Basi6 International, Irving, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-379642

Contactar al vendedor

Comprar nuevo

EUR 72,13
Convertir moneda
Gastos de envío: EUR 25,80
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 9 copia(s) de este libro

Ver todos los resultados de su búsqueda