This book investigates the fabrication of different types of flexible sensors and their subsequent implementation for energy-harvesting applications. A range of techniques, including 3D printing, soft lithography, laser ablation, micro-contract printing, screen-printing, inkjet printing and others have been used to form the flexible sensors with varied characteristics. These sensors have been used for biomedical, environmental and healthcare applications on the basis of their performances. The quality of these flexible sensors has depended on certain types of nanomaterials that have been used to synthesize the conductive parts of the prototypes. These nanomaterials have been based on different sizes and shapes, whose quality varied on the basis of certain factors like crystallinity, shapes and sizes. One of the primary utilization of these nanotechnology-based flexible sensors has been the harvesting of energy where nano-generators and nano-harvesters have been formed to generate and store energy, respectively, on small and moderate magnitudes. Mechanical and thermal energies have been harvested on the basis of the piezoelectric, pyroelectric and triboelectric effects created by the formed prototypes. The work highlights the amalgamation of these sectors to spotlight the essence of these types of sensors and their intended application.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book investigates the fabrication of different types of flexible sensors and their subsequent implementation for energy-harvesting applications. A range of techniques, including 3D printing, soft lithography, laser ablation, micro-contract printing, screen-printing, inkjet printing and others have been used to form the flexible sensors with varied characteristics. These sensors have been used for biomedical, environmental and healthcare applications on the basis of their performances. The quality of these flexible sensors has depended on certain types of nanomaterials that have been used to synthesize the conductive parts of the prototypes. These nanomaterials have been based on different sizes and shapes, whose quality varied on the basis of certain factors like crystallinity, shapes and sizes. One of the primary utilization of these nanotechnology-based flexible sensors has been the harvesting of energy where nano-generators and nano-harvesters have been formed to generate and store energy, respectively, on small and moderate magnitudes. Mechanical and thermal energies have been harvested on the basis of the piezoelectric, pyroelectric and triboelectric effects created by the formed prototypes. The work highlights the amalgamation of these sectors to spotlight the essence of these types of sensors and their intended application.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,28 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 3,79 gastos de envío desde Italia a España
Destinos, gastos y plazos de envíoLibrería: Brook Bookstore, Milano, MI, Italia
Condición: new. Nº de ref. del artículo: I5T5L4FHUH
Cantidad disponible: 5 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783030995997_new
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 246 pages. 9.25x6.10x0.63 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __3030995992
Cantidad disponible: 2 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: S0-9783030995997
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44451674-n
Cantidad disponible: 15 disponibles
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Nº de ref. del artículo: I5T5L4FHUH
Cantidad disponible: 5 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book investigates the fabrication of different types of flexible sensors and their subsequent implementation for energy-harvesting applications. A range of techniques, including 3D printing, soft lithography, laser ablation, micro-contract printing, screen-printing, inkjet printing and others have been used to form the flexible sensors with varied characteristics. These sensors have been used for biomedical, environmental and healthcare applications on the basis of their performances. The quality of these flexible sensors has depended on certain types of nanomaterials that have been used to synthesize the conductive parts of the prototypes. These nanomaterials have been based on different sizes and shapes, whose quality varied on the basis of certain factors like crystallinity, shapes and sizes. One of the primary utilization of these nanotechnology-based flexible sensors has been the harvesting of energy where nano-generators and nano-harvesters have been formed to generate and store energy, respectively, on small and moderate magnitudes. Mechanical and thermal energies have been harvested on the basis of the piezoelectric, pyroelectric and triboelectric effects created by the formed prototypes. The work highlights the amalgamation of these sectors to spotlight the essence of these types of sensors and their intended application. Nº de ref. del artículo: 9783030995997
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783030995997
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44451674
Cantidad disponible: 15 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -This book investigates the fabrication of different types of flexible sensors and their subsequent implementation for energy-harvesting applications. A range of techniques, including 3D printing, soft lithography, laser ablation, micro-contract printing, screen-printing, inkjet printing and others have been used to form the flexible sensors with varied characteristics. These sensors have been used for biomedical, environmental and healthcare applications on the basis of their performances. The quality of these flexible sensors has depended on certain types of nanomaterials that have been used to synthesize the conductive parts of the prototypes. These nanomaterials have been based on different sizes and shapes, whose quality varied on the basis of certain factors like crystallinity, shapes and sizes. One of the primary utilization of these nanotechnology-based flexible sensors has been the harvesting of energy where nano-generators and nano-harvesters have been formed to generate and store energy, respectively, on small and moderate magnitudes. Mechanical and thermal energies have been harvested on the basis of the piezoelectric, pyroelectric and triboelectric effects created by the formed prototypes. The work highlights the amalgamation of these sectors to spotlight the essence of these types of sensors and their intended application.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 248 pp. Englisch. Nº de ref. del artículo: 9783030995997
Cantidad disponible: 2 disponibles