Artículos relacionados a Cohesive Subgraph Search Over Large Heterogeneous Informatio...

Cohesive Subgraph Search Over Large Heterogeneous Information Networks (SpringerBriefs in Computer Science) - Tapa blanda

 
9783030975678: Cohesive Subgraph Search Over Large Heterogeneous Information Networks (SpringerBriefs in Computer Science)

Sinopsis

This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs.

The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspectives such as cohesiveness constraints, shared properties, and computational efficiency. Then, for the CSMs in each group, the authors further analyze and compare their model properties and high-level algorithm ideas.

This SpringerBrief targets researchers, professors, engineers and graduate students, who are working in the areas of graph data management and graph mining. Undergraduate students who are majoring in computer science, databases, data and knowledge engineering, and data science will also want to read this SpringerBrief.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Yixiang Fang is an associate professor in the School of Data Science, Chinese University of Hong Kong, Shenzhen. He received PhD in computer science from the University of Hong Kong in 2017. After that, he worked as a research associate in the School of Computer Science and Engineering, University of New SouthWales, with Prof. Xuemin Lin. His research interests include querying, mining, and analytics of big graph data and big spatial data. He has published extensively in the areas of database and data mining, and most of his papers were published in toptier conferences (e.g., PVLDB, SIGMOD, ICDE, NeurIPS, and IJCAI) and journals(e.g., TODS, VLDBJ, and TKDE), and one paper was selected as best paper at SIGMOD 2020. He received the 2021 ACM SIGMOD Research Highlight Award. Yixiang is an editorial board member of the journal Information & Processing Management (IPM). He has also served as program committeemember for several top conferences (e.g., ICDE, KDD, AAAI, and IJCAI) and invited reviewer for top journals (e.g., TKDE, VLDBJ, and TOC) in the areas of database and data mining.
Kai Wang is an Assistant Professor at Antai College of Economics & Management, Shanghai Jiao Tong University. He received his BSc degree from Zhejiang University in 2016 and his PhD degree from the University of New South Wales in 2020, both in computer science. His research interests lie in big data analytics, especially for the big graph and spatial data. Most of his research works have been publishedin top-tier database conferences (e.g., SIGMOD, PVLDB, and ICDE) and journals (e.g., VLDBJ and TKDE).
Xuemin Lin is a Chair Professor at Antai College of Economics & Management, Shanghai Jiao Tong University. He is a Fellow of IEEE. He received his BSc degree in applied math from Fudan University in 1984 and his PhD degree in computer science from the University of Queensland in 1992. Currently, he is the editorin-chief of IEEE Transactions on Knowledge and Data Engineering. His principal research areas are databases and graph visualization.
Wenjie Zhang is a professor and ARC Future Fellow in the School of Computer Science and Engineering at the University of New South Wales in Australia. She received her PhD from the University of New South Wales in 2010. She is an associate editor of IEEE Transactions on Knowledge and Data Engineering. Her research interests lie in large-scale data processing, especially in query processing over spatial and graph/network data.

De la contraportada


"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 4,04 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Cohesive Subgraph Search Over Large Heterogeneous Informatio...

Imagen de archivo

Kai Wang
Publicado por Springer Nature Switzerland AG, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Nuevo PAP

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: S0-9783030975678

Contactar al vendedor

Comprar nuevo

EUR 50,76
Convertir moneda
Gastos de envío: EUR 4,04
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen del vendedor

Yixiang Fang
ISBN 10: 3030975673 ISBN 13: 9783030975678
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs.The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspectives such as cohesiveness constraints, shared properties, and computational efficiency. Then, for the CSMs in each group, the authors further analyze and compare their model properties and high-level algorithm ideas.This SpringerBrief targets researchers, professors, engineers and graduate students, who are working in the areas of graph data management and graph mining. Undergraduate students who are majoring in computer science, databases, data and knowledge engineering, and data science will also want to read this SpringerBrief. 96 pp. Englisch. Nº de ref. del artículo: 9783030975678

Contactar al vendedor

Comprar nuevo

EUR 48,14
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Fang, Yixiang/ Wang, Kai/ Lin, Xuemin/ Zhang, Wenjie
Publicado por Springer-Nature New York Inc, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Nuevo Paperback
Impresión bajo demanda

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 93 pages. 9.25x6.10x0.32 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __3030975673

Contactar al vendedor

Comprar nuevo

EUR 47,83
Convertir moneda
Gastos de envío: EUR 11,61
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Fang, Yixiang; Wang, Kai; Lin, Xuemin; Zhang, Wenjie
Publicado por Springer, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783030975678_new

Contactar al vendedor

Comprar nuevo

EUR 54,57
Convertir moneda
Gastos de envío: EUR 5,21
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Yixiang Fang
Publicado por Springer International Publishing, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs.The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspectives such as cohesiveness constraints, shared properties, and computational efficiency. Then, for the CSMs in each group, the authors further analyze and compare their model properties and high-level algorithm ideas.This SpringerBrief targets researchers, professors, engineers and graduate students, who are working in the areas of graph data management and graph mining. Undergraduate students who are majoring in computer science, databases, data and knowledge engineering, and data science will also want to read this SpringerBrief. Nº de ref. del artículo: 9783030975678

Contactar al vendedor

Comprar nuevo

EUR 48,14
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Fang, Yixiang|Wang, Kai|Lin, Xuemin|Zhang, Wenjie
ISBN 10: 3030975673 ISBN 13: 9783030975678
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and. Nº de ref. del artículo: 560621334

Contactar al vendedor

Comprar nuevo

EUR 43,98
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Fang, Yixiang; Wang, Kai; Lin, Xuemin; Zhang, Wenjie
Publicado por Springer, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783030975678

Contactar al vendedor

Comprar nuevo

EUR 59,23
Convertir moneda
Gastos de envío: EUR 6,87
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Fang, Yixiang
Publicado por Springer 2022-05, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Nuevo PF

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783030975678

Contactar al vendedor

Comprar nuevo

EUR 50,30
Convertir moneda
Gastos de envío: EUR 17,41
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen de archivo

Fang, Yixiang; Wang, Kai; Lin, Xuemin; Zhang, Wenjie
Publicado por Springer, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 1st ed. 2022 edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26394735076

Contactar al vendedor

Comprar nuevo

EUR 66,85
Convertir moneda
Gastos de envío: EUR 9,87
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Fang, Yixiang; Wang, Kai; Lin, Xuemin; Zhang, Wenjie
Publicado por Springer, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 401642043

Contactar al vendedor

Comprar nuevo

EUR 69,19
Convertir moneda
Gastos de envío: EUR 10,28
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Existen otras 3 copia(s) de este libro

Ver todos los resultados de su búsqueda